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Foreword

This volume contains the proceedings of the 2nd Workshop
on Causal Discovery (CaDis 2024). The workshop was held at the
Facultad de Ingeniería of the Universidad de la República in Mon-
tevideo, Uruguay as part of IBERAMIA 20224. This edition was
made possible through the collaboration of the National Institute
of Astrophysics, Optics, and Electronics of Mexico (INAOE), the
National Center for Artificial Intelligence (CENIA) of Chile, and
the Iberamia organizing committee. We acknowledge ths support
of the Artificial Intelligence Journal, and the Mexican Academy
of Computing (AMexComp).

Causal models have many advantages, including the ability to
reason about the effects of interventions, as well as the results of
different scenarios or counterfactuals. The traditional approach
for building causal models is by conducting experiments, however
these are often infeasible, unethical or too expensive. Recently
there has been a lot of interest in the scientific community to
learn causal models from observational data, but this is a great
challenge, as just from observations is not possible, in general, to
define a unique causal model.

The objective of this workshop was to present recent advances
in causal discovery, including different approaches that consider
observational and/or interventional data, and also building models
with the help of human experts. It is also of interest the combina-
tion of causal discovery with other areas of machine learning, such
as reinforcement learning and deep learning; as well as real-world
applications.

The CaDis 2024 program included invited talks by Prof. Kun
Zhang (professor and the acting department chair of machine
learning at Mohamed bin Zayed University of Artificial Intelli-
gence, MBZUAI, and professor at Carnegie-Mellon University)
and Prof. David Danks (professor of Data Science, Philosophy,



v

& Policy at University of California, San Diego). Video record-
ings of these talks are available at the workshop website: https:
//cadisworkshop.com.mx/program/.

After a review by at least three members of the program com-
mittee, eleven papers were accepted for publication in these pro-
ceedings. In an analogous way as the workshop, this proceedings
are divided in three parts: (i) Invited Talks abstracts, (ii) Fun-
damentals and Algorithms for Causal Discover, and (iii) Applica-
tions.

We hope that this workshop will help to increase the interest
of the academic community in causal reasoning and discovery, in
particular in the Iberoamerican region; and help to foster new
collaborations between different research groups.

Luis Enrique Sucar and Julio César Muñoz-Benitez
Workshop Chairs

https://cadisworkshop.com.mx/program/.
https://cadisworkshop.com.mx/program/.
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2 Invited Talks

Causal Representation Learning: Uncovering the Hid-
den World

Author: Prof. Kun Zhang, Mohamed bin Zayed University /
Carnegie-Mellon University

Abstract: Causal representation learning aims to reveal the un-
derlying high-level hidden causal variables and causal influences,
and causal models naturally inform optimal interventions, support
decision making, and allow adaptive prediction in nonstationary
environments. In this talk, we show how to recover the underlying
causal representations from observational data with identifiability
guarantees: under appropriate assumptions, the learned represen-
tations are consistent with the underlying causal process. Vari-
ous problem settings are considered, involving independent and
identically distributed (i.i.d.) data, temporal data, or data with
distribution shift as input. We then demonstrate when identifi-
able causal representation learning can benefit from flexible deep
learning and when suitable parametric assumptions have to be im-
posed on the causal process. We then show how to learn compact,
interpretable state representations, together with the underlying
causal model, in deep reinforcement learning and how to make
quick adaptations in transfer reinforcement learning.
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Causal Discovery from Complicated Data

Author: Prof. David Danks, University of California, San Diego

Abstract: Much of the research on causal discovery methods fo-
cuses on methods able to handle increasingly complex systems,
whether in terms of number of variables, density of connections,
complexity of parametric functions, and more. In contrast, this
talk will focus on causal discovery when we have challenges due to
complicated measurements. We are often unable to measure ex-
actly what and how we want, and as a result, real-world causal dis-
covery requires methods that are robust to different measurement
issues. Specifically, I focus on two different types of challenges.
First, we might not be able to measure at the same timescale
as the causal connections; for example, fMRI measurements are
much slower than the brain’s timescale, or economic measures are
typically released less frequently than economic activity occurs.
I will describe several causal discovery algorithms that we have
developed for this situation, demonstrating both theoretical and
real-world performance. I also demonstrate that we can some-
times benefit by measuring even more slowly, contra the standard
advice that “faster measurement is better measurement.” Second,
we might not be able to measure all of the relevant variables at
the same time; for example, a healthcare organization and finan-
cial institution might each measure variables that interest them,
but we cannot (for privacy reasons) integrate those into a single
dataset. I describe causal discovery methods that can extract in-
formation about the global causal structure from these partial,
overlapping datasets, and show that the methods can yield novel
scientific insights on real-world data.
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A Framework for Practical Causal Discovery from
Observational Data

Gustavo F.V. de Oliveira1, Fabrício A. Silva1, and Marcus H.S. Mendes1

IEF, Universidade Federal de Viçosa, Florestal, Brazil
{gustavo.viegas,fabricio.asilva,marcus.mendes}@ufv.br

Abstract. Causal reasoning is crucial for advancing AI models beyond
correlation-based predictions to infer meaningful cause-and-effect rela-
tionships. This paper introduces a novel framework that facilitates causal
inference for AI developers with minimal causality expertise. It integrates
multiple causal discovery algorithms, standardizes data structures, and
employs parallel processing to generate and evaluate causal models ef-
ficiently. It automates the selection of appropriate algorithms based on
data attributes and prioritizes feature importance to ensure robust causal
effect estimation and refutation. The framework effectiveness is demon-
strated through a benchmark on a real-world dataset, where it accurately
identifies known causal relationships. By providing user-friendly outputs
and customizable features, the framework enhances the accessibility and
reliability of causal analysis in AI, paving the way for its application in
sensitive domains such as healthcare, finance, and justice.

Keywords: Causality · Causal Discovery · Framework · Ethical AI.

1 Introduction

Causation is the concept referring to the cause-and-effect relationship wherein
one event (the cause) leads to another event (the effect) and establishes a direct
connection or influence between them [17]. Artificial Intelligence (AI) models
have demonstrated remarkable capabilities in establishing intricate connections
and making accurate predictions from data. However, when confronted with un-
familiar data, these models face challenges, leading to inaccurate causal relation-
ships [16]. This limitation is particularly troubling in ethical AI, where biased
associations are highly undesirable, such as the risk of incorrect associations
between factors like race and criminal behavior, resulting in unjust outcomes
[6].

The complexity of the field, with its requirements of domain knowledge,
causal Directed Acyclic Graph (DAG) notation, causal discovery algorithms,
estimators, and refuters, can be discouraging. While the adoption of causality
analysis has the potential to enhance AI models, the incorporation of these con-
cepts can be overwhelming and challenging due to the steep learning curve and
the need to stay current with evolving content. The early stage of development
of causal frameworks poses a challenge to their widespread adoption. The field

6 Fundamentals and Algorithms for Causal Discovery



 G.F.V de Oliveira, F.A. Silva, M.H.S Mendes.
is relatively new, with the most popular and corporate-backed packages released
within the last five years [21,24,5]. Additionally, essential performance features
like time limits and parallelism still need to be universally implemented, which
could be a significant burden for certain self-learning AI models to overcome.

To facilitate the adoption of causal inference, this paper introduces Causal-
Nest, a user-friendly framework simplifying causal inference for AI developers
with limited causality knowledge. The primary goal of the framework is to build
multiple causal models using relevant causal discovery algorithms while consid-
ering time constraints and prioritizing potential causal models and their rela-
tionships. It can automatically select suitable causal discovery algorithms based
on the input data and standardize input and output formats across all processes.
Additionally, it produces a graphical output summarizing the pipeline results in
a format that is easy for humans to understand.

The article is organized as follows: Section 2 overviews the main causality
pipeline: causal discovery and inference. Section 3 presents our proposed frame-
work. Section 4 discusses experimental results, and Section 5 concludes the work.

2 Related Work

This section discusses key components of a causality pipeline that systematically
identifies causal relationships from observational data. The main steps of the
pipeline are causal discovery to uncover the causal graph and causal inference
to estimate effects. To our knowledge, existing literature lacks comprehensive
frameworks that can independently address all aspects of a causality problem
without the need for manual algorithm selection, model prioritization, and par-
allel execution, which would typically necessitate a substantial understanding of
causality from the user.

2.1 Causal Discovery (CD)

The process of extracting causality knowledge from data involves key steps. It be-
gins with problem formulation and constructing a causal model using a Directed
Acyclic Graph (DAG) to represent hypothesized causal pathways among iden-
tified variables. Causal Discovery (CD) refers to the process that creates these
models from observational data, and various methodologies exist for uncovering
causal graph structures.

Causal discovery methods often yield DAGs or undirected Bayesian networks,
each presenting its computational complexities. Several factors must be consid-
ered when choosing a causal discovery algorithm, including computational com-
plexity, data assumptions, and the ability to extract meaningful causal relation-
ships [17]. The selection criteria involve analyzing the data types, distribution
assumptions, and linearity assumptions [23].
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2.2 Causal Inference (CI)

Causal Inference (CI) is a complex task involving estimating causal effects based
on a causal graph constructed by domain experts or inferred by advanced causal
discovery algorithms. Statistical estimators quantify causal effects between vari-
ables in a causal model, and different interpretations of these estimations require
domain-specific expertise for accurate understanding [17].

Validating the accuracy of causal effect estimations involves a comprehen-
sive understanding of the data domain and conducting refutation tests. These
tests include sensitivity analyses, such as introducing random placebo variables,
adding random standard cause variables, or removing subsets from the data to
ensure the inferred causal relationships are robust and align with theoretical
expectations.

3 Causal-Nest

Domain Knowledge
(Optional)

Observational Data

Features Type
and Target Mapping

N Estimated
Causal Graphs

Data
Handling

Feature
Importance
Estimation

Causal
Discovery

Causal
Effect

Estimation

Estimates
Refutation

Output
Graphs

Generation

Fig. 1: Summarized pipeline of the proposed framework

This paper proposes a novel framework named Causal-Nest1. This framework
includes a user-friendly interface for easier adoption and automatically manages
the many rules and restrictions present in the field of causality. Figure 1 illus-
trates the key steps in the framework pipeline and their inputs and outputs. All
algorithms in the framework were developed in Python 3.9 using packages for
graph manipulation, dataset formatting, as well as causal discovery implemen-
tation with R backends, and estimation (through high-level packages [9,28,21]).
Parallelism was employed in causal discovery, estimation, and refutation using
the Pebble package version 5.0.

The framework has a standardized approach to data structures, inputs, and
outputs. All graphs are represented as Networkx [8] graphs that can be easily
translated to DOT, adjacency matrix, and other formats. This standardization
ensures a consistent causal process, as the implemented discovery methods in the
current causal frameworks operate uniformly while enabling easy customization
and adding new methods. The graphical output is in DOT format and can be
rendered in SVG, PNG, or other formats.

1 The code and additional benchmarks are available on GitHub.

8 Fundamentals and Algorithms for Causal Discovery



G.F.V de Oliveira, F.A. Silva, M.H.S Mendes.

3.1 Input and Data Handling

To run the entire pipeline, only a few inputs are necessary: the observational dataset
for analysis, the type mapping of variables in the dataset, such as categorical,
continuous, and discrete, and the target column representing the observed effect.
Causal-Nest assumes the input data is processed, cleaned, and formatted. It can
handle diverse problem domains and data dimensions. If data is missing, the
framework can drop it, apply forward fill or interpolate based on user preference.

Although establishing causality can be challenging, some relationships, such
as holidays causing rain, are known to be false upfront. The domain knowledge
of forbidden and required edges can be provided as input, formatted in a text file
respecting the syntax described in [28].

3.2 Feature Importance Estimation

While correlation does not directly indicate causation, it is improbable for a
causal relationship to exist between two variables that are not closely connected.
Causal-Nest includes user-defined strict time limits for tasks such as effect
estimation and refutation. These tasks are ranked in a prioritized list based on
their calculated feature importance, which is determined using a Random Forest
classifier or regression, and automatically chosen based on the nature of the problem.
Establishing this prioritized list helps prevent potentially valuable candidates for
causal effects from being overlooked in later stages of the process due to the time
limit constraints and their lower position in the sequentially processed list of
variables and the time limit constraints.

3.3 Causal Discovery (CD)

Several causal discovery algorithms are available in the literature, each with
requirements and restrictions. Choosing the most appropriate one for a particular
problem is a complex task. Causal-Nest includes twelve CD algorithms and
automatically evaluates the ones suitable for the given problem scope, considering
the data types of variables, normality distribution (as some models assume Gaussian
data), and linearity. Table 1 displays the implemented CD algorithms in Causal-
Nest with their corresponding backend and type of discovery. The framework also
simplifies the process of implementing other discovery methods, both in terms of
execution and constraints, to be verified for running in a given dataset. It can be
achieved by implementing a straightforward interface that must adhere to two
functions: a Boolean function determining if the algorithm is suitable for a given
dataset input and another function to output the discovered graph.

The framework validates the data type of each feature in the input dataset to
ensure compatibility with the model-accepted data types. If any feature has an
unsupported type, the discovery algorithm will be rejected and not applied. A
D’Agostino and Pearson-based test is employed for normality checks. This test
assumes normality if all features yield a p-value lower than the default threshold
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of 0.05, applying the null hypothesis that the feature values come from a normal
distribution. Lastly, linearity between each variable and the target is assessed
using linear regression, expecting the mean of residuals to be lower than the
default threshold of 0.05.

CD Algorithm Type Backend

1. Grow-Shrink (GS) [13] Constraint-based bnlearn [20]

2. Incremental Association Markov Blanket (IAMB) [25] Constraint-based bnlearn [20]

3. Causal Additive Models (CAM) [4] Constraint-based CAM R [4]
4. Concave Penalized Coordinate
Descent with Reparametrization (CCDr) [3] Score-based sparsebn [2]

5. Causal Generative Neural Networks (CGNN) [7] Score-based pytorch [1]

6. Greedy Equivalance Search (GES) [15] Score-based pcalg [14]

7. Greedy Interventional Equivalance Search (GIES) [15] Score-based pcalg [14]

8. Linear Non-Gaussian Acyclic Model (LiNGAM) [22] Score-based pcalg [14]

9. Peter-Clark (PC) [11] Constraint-based pcalg [14]

10. Structural Agnostic Model (SAM) [10] Score-based pytorch [1]

11. Greedy Relaxation of the Sparsest Permutation (GRaSP) [12] Permutation-based causallearn [28]

12. BIC Exact Search (BES) [27] Score-based causallearn [28]

Table 1: Causal Discovery algorithms implemented by Causal-Nest

The framework uses a diverse range of causal discovery algorithms to con-
struct a causal graph from the provided data. This process is parallelized and
allows the user to specify the maximum number of workers, which defaults to
the number of CPUs in the runtime system. The framework does not prioritize
the execution order of algorithms, as the choice depends vastly on the prob-
lem domain context. Each worker is responsible for creating the causal graph,
generating essential statistics and rankings, and has a user-defined timeout for
execution. The automatic algorithm selection, discovery parallelization, time-
out execution limits, and user-friendly statistics are fundamental features of the
proposed framework, enabling systems that generate real-time data to extract
causal knowledge from the data.

Some methods used to derive a causality model from data were not initially
designed for causality but for Bayesian networks or other use cases. As a result,
the outcome of the discovery algorithms may not always produce a Directed
Acyclic Graph (DAG). In such cases, Causal-Nest incorporates a custom-defined
function to handle these situations. Therefore, every causal discovery graph gen-
erated in Causal-Nest is a DAG.

The generated statistics in the causal discovery step include the Forbidden
Edges Violation Rate (FEVR), the Required Edges Compliance Rate (RECR),
and the Knowledge Integrity Score (KIS), which are also contributions of this
work. FEVR represents the percentage of forbidden edges present in the gener-
ated graph, while RECR indicates the percentage of required edges present in
the graph. KIS, a score ranging from 0 to 1, is calculated based on Equation 1,
considering FEVR and RECR. A score of 1 indicates that the graph fully ad-
heres to the knowledge restrictions, while a score of 0 indicates that the graph

10 Fundamentals and Algorithms for Causal Discovery



G.F.V de Oliveira, F.A. Silva, M.H.S Mendes.

Algorithm 1: Causal Discovery generated graph priority score
Input : Graph G, target node t
Output: Ranking score

1 if t /∈ G.nodes() then return 0
2 num_incoming_edges← G.in_degree(t)
3 num_nodes← |G.nodes()|
4 edge_score← num_incoming_edges

num_nodes

5 distances← G.get_nodes_shortest_distance_to(target=t)

6 avg_distance←
∑

d∈distances d

|distances|
7 distance_score← 1

avg_distance+1

8 density_score← G.density()
9 connectivity_score← 1 if G.is_weakly_connected() else 0

10 bc← G.betweenness_centrality_values()
11 betweenness_score←∑

b∈bc b
12 score← 100× (edge_score× distance_score× density_score×

connectivity_score× betweenness_score)
13 return score

does not adhere to any imposed restrictions. If no knowledge input is provided,
FEVR is defined as 0 and RECR as 1, resulting in a KIS of 1, signifying that no
restrictions are violated.

KIS = (1− FEVR)× RECR (1)

Priority Score Another metric proposed in this work and assigned to a causal
discovery graph output is the Priority Score, as detailed in Algorithm 1. It
systematically organizes graphs generated by multiple causal discovery algo-
rithms based on their potential to contain pivotal causal connections, meaning
the higher the value, the more likely it contains the expected causal paths.

Graphs Comparison The generated graphs can be compared by utilizing var-
ious metrics to compare them against a ground truth graph, if available, or
each other. Within Causal-Nest we have implemented three essential metrics
for graph comparison: the Area Under the Precision-Recall Curve (AUCPR),
Structural Hamming Distance (SHD) [26], and Structural Intervention Distance
(SID) [18]. AUC-PRC assesses overall classification accuracy and misclassifica-
tion when comparing adjacency matrices of graphs. SHD quantifies discrepan-
cies by evaluating missing edges and directionality errors. SID examines causal
relationships by computing paths between all pairs of variables to confirm con-
sistency with causal features.

3.4 Causal Effect Estimation

Causal-Nest builds upon the DoWhy package [21] pipeline for estimating the
causal effect of a variable. It is accomplished by first identifying the causal ex-
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pression by assessing the graph structure and then estimating the variable effect.
The proposed framework utilizes DoWhy default implementation to extract the
identified estimand while disregarding unobserved confounders. Additionally, it
employs DoWhy estimation methods, which can be parameterized by the user,
defaulting to propensity score stratification. Therefore, the whole variable esti-
mation process takes a causal graph and a variable as input and produces the
causal estimate along with the p-value, indicating the statistical significance of
the estimated causal effect.

The estimation process must be individually assessed for each variable acting
as the treatment, which can lead to increased complexity. For a dataset with N
independent variables and K discovered graphs, a total of N × K estimations
will be carried out. In this scenario, the priority score of the discovered graphs
(refer to Section 3.3) and the importance of features (refer to Section 3.2) play a
crucial role in prioritizing the execution of the estimations. This prioritization is
crucial as there is a hard time limit in place, which may prevent certain variables
or graphs from being assessed. The estimation execution of a list of discovered
graphs follows these steps:

1. Prioritize the graphs and features by sorting them in descending order based
on their priority scores.

2. Create a parallelized process queue with a user-configurable maximum num-
ber of workers. By default, this maximum is set to the available CPU count
in the running system.

3. Each process estimates the features sequentially, following the priority order.
It has a user-configurable time limit to estimate the effect of as many vari-
ables as possible. If time runs out, partial estimations are allowed, meaning
a graph can estimate a fraction of the variables.

4. After completing a process, store the estimation results independently for
each model. Then, select the following graph in the queue for estimation.

3.5 Estimates Refutation

Refutation methods are built on top of the DoWhy package [21] and can easily
support custom methods if they adhere to a simple interface. These methods
take the dataset (and its feature mapping) and an estimation result as input
and return an instance with the newly estimated effect and a p-value associated
with the significance test of the newly calculated effect and the previous one. Our
framework deems a refutation to have passed the refutation test if the p-value
exceeds the default threshold of 0.05.

In the refutation phase, hard time limit constraints are applied due to the ex-
tensive input. Each variable serving as a treatment needs individual evaluation,
and refutation must be handled for each estimation result. Multiple refutation
methods are executed for each estimation result, resulting in a significant input
size of N ×K × Z, where N is the number of independent variables, K is the
number of discovered graphs, and Z is the number of refuters. The proposed

12 Fundamentals and Algorithms for Causal Discovery
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framework establishes a global timeout for the total execution time of the
refuting pipeline and a model timeout for each estimation result entry,
providing flexibility in handling different estimation results and refutation
methods.

This study uses three methods of refutation: Placebo Treatment Refuter
(PTR), Random Common Cause Refuter (RCCR), and Subset Removal Refuter
(SRR). Each method tests different aspects of the estimated effect independently.
Time constraints may limit the number of refutation tests that can be performed.
The refutation execution of a list of estimation results follows these steps:

1. Prioritize the estimation results by arranging them in descending order based
on their estimated effect values.

2. Create a parallelized process queue with a user-configurable maximum num-
ber of workers. By default, the maximum is set to the available CPU count.

3. Assign the process queue with independent estimation results based on the
priority order. Each process tests the estimation result sequentially with the
implemented refutation methods.

4. After completing the refutations for an estimated result or reaching the
model-timeout threshold, store the refutation results independently for each
estimation result. Then, select the next entry in the sorted list if the global
timeout has not been reached.

3.6 Output Graphs Generation

The proposed framework provides a user-friendly output for quickly evaluating
the generated graphs, including their estimation and refutations, as shown in
Figure 2. It generates a custom DOT output graph for each graph discovered,
allowing the user to inspect the causal effect estimates, the Refutation Pass
Rate (RPR), and the presence of forbidden edges or the absence of required
edges. Features include the feature name and the causal estimate below, while
the target node is represented as a pink hexagon. Feature nodes follow a color
scheme: green for variables that passed all refutation tests, red for those that
passed up to 33% of the refutation tests, yellow for values in between, and split
blue for variables with no refutation tests executed. A grey node is shown when
the estimated effect of the node is 0, indicating that the variable has no estimated
causal effect on the target.

If domain knowledge is provided as input to the framework, it may display
edges in various styles in addition to the standard filled black arrow, which
represents a causal relationship. A filled red arrow denotes an undesired edge,
as specified in the domain input. In contrast, a gray dashed edge indicates edges
listed as required in the input that were not discovered by the causal discovery
algorithm. In the case of a pair of nodes with both a red and a dashed gray
edge, this signifies a wrongly directed edge. Causal-Nest can correct these edges
by modifying the graphs generated during the causal discovery process with the
help of an optional flag that is turned off by default.

13
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(b) Edges notation
for output graph

Fig. 2: Custom nodes and edges style specification for the output graph

4 Experimental Results

We showcase the execution of the causality pipeline in a real-world dataset that
includes a generally accepted ground truth. The experiments were conducted on
a 2023 MacBook Pro with an Apple M3 Pro chip and 36 GB of memory. All
applied benchmarks utilized identical parameters for parallelization and time
limits. Expressly, the maximum number of workers was set to 12. Additionally,
a 30-minute timeout was established for each discovery model for causal dis-
covery and estimation. A 30-minute global timeout and a 4-minute timeout per
estimation result were applied for refutation.

The dataset created by Sachs et al. [19] is a widely used benchmark in causal-
ity due to its known ground truth graph, which consists of 19 directed edges. The
dataset contains empirical quantitative data with 11 features and 7466 instances.

We treat the ‘pjnk‘ column as the target and map all other columns as
continuous features. The dataset does not contain missing data. After the input
is given, the feature sorting is applied with calculated associated importance.

The ground truth graph contains two edges pointing to the target node,
from PKC and PKA, as Figure 4-a shows. Even though the feature importance
ranking is determined by a regressor using the data and does not consider the
ground truth, our solution placed these features at the top 4 of the sorted list.
Out of the 9 paths to the target node in the ground truth, 7 involve the PKC
feature, and PKA has a direct edge to the target, justifying their high ranking.
Furthermore, 4 out of the lowest 5 features in the ranking do not have a path to
the target in the ground truth.

Out of the 12 discovery methods implemented, Causal-Nest identified 8 appli-
able: PC, GS, CCDr, IAMB, SAM, BES, GRaSP, and CGNN. Due to the dataset
size and complexity, SAM and CGNN timed out, while the others yielded DAGs
with various calculated priority scores. BES had the highest score at 1.04, fol-
lowed by IAMB (0.79), GS (0.76), PC (0.63), GRaSP (0.56), and CCDr (0.00).
Figure 3 displays the discovered graphs with the highest (a) and lowest (b)
priority scores. As expected, the graph generated by BES, containing multiple
paths to the target and high interconnectivity, received a higher ranking. Con-
versely, the final graph in the list, lacking edges pointing towards the target and
disconnected, justifies its lower position in the sorting order.
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(a) Discovered graph by BES (b) Discovered graph by CCDr

Fig. 3: Discovered graphs sample for Sachs dataset

Table 2 compares the metrics for the discovered graphs. Additionally, Figure 4
shows the dataset ground truth alongside the output generated by the graph with
the higher estimated causal effect (generated by PC), depicting the estimated
effects of the features and their associated refutations. Notably, algorithms such
as CCDr and PC demonstrated competitive performance, with AUCPRC scores
of 0.45 and 0.38, respectively, indicating robust predictive power in identifying
causal relationships. Achieving a 100% RPR across all algorithms highlights the
capability of our solution to effectively generate robust causal models, enhancing
the reliability of inferred causal relationships. The distances (SHD and SID)
achieved in the benchmarks demonstrate varying levels of structural accuracy
across algorithms, reflecting the diverse nature of causal discovery models and
indicating the utility of a diverse set of algorithms in causality problems.

CD Model Priority
Score AUCPR SHD SID Max Causal Effect

Estimate
Max Causal Effect

p-value
Max Causal Effect

RPR
1. GS 0.38 0.42 27 78 1.48 1.94e-05 100%

2. IAMB 0.77 0.25 35 90 1.83 2.57e-26 100%

4. CCDr 0.00 0.45 17 72 1.89 1.13e-18 100%

9. PC 0.63 0.38 28 83 2.01 1.50e-80 100%

11. GRaSP 0.18 0.09 42 86 1.87 3.98e-130 100%

12. BES 1.04 0.30 42 79 1.37 8.39e-114 100%

Table 2: Stats for the causality pipeline on the Sachs dataset

5 Conclusion

This work proposes a new framework that significantly advances causal inference
for AI model developers, particularly those with minimal expertise in causality.
By integrating multiple causal discovery algorithms and addressing crucial as-
pects such as time constraints and prioritization of potential causal models,
Causal-Nest effectively simplifies the complex process of causal analysis.

Our experimental results demonstrate the capability of the framework to
handle real-world problems. The performance of Causal-Nest on the Sachs et
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(a) Sachs ground truth
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Fig. 4: Comparison between Sachs ground truth and a generated output graph

al. [19] dataset underscores its precision in identifying known causal relation-
ships, thereby validating its effectiveness. The framework provides user-friendly
outputs, featuring custom DOT graphs and a color-coded scheme, which enhance
the interpretability of causal effect estimates and refutation results, making it
accessible to users with varying levels of expertise.

In conclusion, Causal-Nest bridges a critical gap in AI development, pro-
viding a powerful tool for uncovering and validating causal relationships. This
advancement is promising to improve decision-making and predictions in sensi-
tive and high-stakes fields such as healthcare, justice, and finance. Future work
should continue to refine and expand the capabilities of the framework, ensuring
its adaptability to an ever-evolving landscape of AI and causality research.
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Abstract. Causal structure learning is fundamental for understanding
complex processes to discover causal relationship between its variables.
Traditional algorithms have relied in observational data and assump-
tions to face this task. However, to estimate reliable causal models is
still challenging, in particular with limited data. In this work, we apply
two approaches to improve the learning of causal structures using causal
discovery algorithms. The first approach, utilizes as prior knowledge the
results provided by four variable ordering-based methods. While in the
second approach, we apply a novel method to generate synthetic data to
expand datasets with small samples. Validation of results is realized by
topological and statistical metrics. Preliminary results demonstrate that
both approaches are promising.

Keywords: Causal Learning Algorithms · Ordering-based methods ·
Diffusion data generation.

1 Introduction

Causal Discovery, also known as causal structure learning, is a fundamental field
of research in many disciplines related with sciences and engineering. It´s target
consists on estimating causal relationships from observational or interventional
data. A traditional way to uncover causal relationships is through randomized
controlled experiments; this process is the golden standard for learning causality
and estimating causal effects, in many real-world applications. However, very
often it will be impractical due to its cost, ethical reasons, logistic limitations
or even impossible to conduct [1]. Hence, the importance of causal discovery,
i.e., the process of revealing causal information through the analysis of purely
observational data, which has become increasingly apparent across diverse dis-
ciplines [2,3]. For example, in health area, causal discovery has been of great
importance to understand the relationships between certain genes and diseases.
For this purpose, the researchers have available repositories with biological data.
However, is common to observe in these datasets that the number of variables
exceed the sample size making it difficult to obtain a reliable causal model.
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Current algorithms applied for causal discovery can be broadly classified into
following categories [5]: a) Constraint-based, b) Score-based, and c) Functional
causal models. Constraint-based and score-based methods have been employed
for causal discovery since the 1990s, using conditional independence relation-
ships in data to uncover information about the underlying causal structure. The
algorithm representative of the Constraint-based class is the developed by Pe-
ter and Clark [6], it assumes causal sufficiency and is generally known as the
PC algorithm. In cases without latent confounders, score-based algorithms like
the Greedy Equivalence Search (GES) [7] aim to find the causal structure by
optimizing a score function and select a graph among the Markov equivalence
class. On the other hand, algorithms based on Functional Causal Models, like
Direct LiNGAM [8] have exhibited the ability to distinguish between different
Directed Acyclic Graphs (DAGs) within the same equivalence class, thanks to
additional assumptions on the data distribution beyond conditional indepen-
dence relations (linear relations among variables and non-Gaussian distribution
in the noise signals). All algorithms depend on having enough data either to
estimate independence relations or to calculate a global score.

Two alternatives in the case of scarce data are (i) incorporating expert knowl-
edge, and (ii) generating synthetic data. The search space of causal discovery
algorithms grows exponentially with the increase in the number of variables,
the use of expert knowledge reduces this search space and guides the estimation
of reliable models [4] [5] Another alternative is to generate synthetic data that
provides a similar distribution to the real data, so the amount of data can be
increased and in this way improve the performance of the causal discovery tech-
niques. But a challenge is to generate data so that it is not identical to the real
data, and at the same time, maintains the same causal relations.

Recently, there has been a growing body of research that justify the use of
expert knowledge in causal discovery [9,10]. An alternative is to provide the
topological ordering of the variables which reduces the search space, and helps
to determine the causal relationships. We leverage this aspect and use this in-
formation as domain knowledge in conventional algorithms. Real data generated
by randomized controlled experiments does not follow a predictable behavior in
their distribution. So, we select some order-based methods with different data
distributions, and to use the combination of the intermediate results as domain
knowledge in conventional causal discovery algorithms.

It is important to note that these causal discovery methods benefit from
using the largest possible amount of observational data. However, this is often
not possible because the observed data are limited due to the nature of the
phenomenon or activity of interest being analyzed, the high cost of repeating
experiments, ethical factors that prevent the reproducibility of the experiment,
or the difficulty of recreating the experiment under the same conditions. Due to
this, as part of this work, a synthetic data generation model, based on a diffusion
approach, was proposed to create datasets with a certain degree of variability by
integrating various levels of noise. The objective was to obtain a larger amount
of data that would closely resemble the original data.
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In this work, we introduce two approaches to improve the learning of causal
models using several causal discovery algorithms (PC, GES and DirectLiNGAM).

– We incorporate results provided by causal ordering-based algorithms, which
will be used as domain knowledge. Then, we integrate this information as
the adjacency matrix to determine the initial state of the causal graphs.

– We developed a tool based on diffusion techniques to generate synthetic data
with similar characteristics to the real data.

Preliminary results indicates that both approaches are promising. The use of
edges coincidences -to form the adjacency matrix- obtained from the full DAG in
topological ordering step, by four order-based algorithms, improve in some cases
the model generated by causal discovery algorithms. In the same sense, synthetic
datasets generated by the proposed technique obtain comparable results as the
real dataset, and when combined with real datasets surpass -in some cases- the
estimated causal structure. Although these results are satisfactory, additional
experiments with a larger collection of cases are considered as future work.

2 Related Work

There are several reasons that make the task of causal discovery difficult. In
general it is not possible to learn all causal relationships from observational data
alone; what we can recover is a set of statistically equivalent models known as
a Markov equivalence class. Additionally, a large data set is required to provide
reliable statistical measures for either local or global algorithms.

The work proposed by Heckerman and Geiger [15] is one of the earliest that
considers prior knowledge in the structure learning process; it is a soft-constraint
approach, where the learning process is guided to reward graphs that are closer
to an initial best knowledge graph. One of the first implementations of hard con-
straints is presented in the score-based K2 algorithm [16], which assumes that the
temporal order of the data variables is given, thereby restricting the search space
of graphs to be consistent with the temporal ordering. Other relevant studies in-
clude the work of [17] on measuring the effect of knowledge about the existence
or absence of edges, in addition to node ordering constraints, with application
to score-based search methods and the constraint-based PC algorithm.

Causal discovery algorithms benefit by using the largest amount of data avail-
able. However, sometimes there is a limited amount of data. An alternative is to
generate synthetic data based on the observable data; this is, create new data
from the original data. In synthetic data generation, selecting the appropriate
model is crucial to ensure that the generated data maintains the desired prop-
erties, such as realism, stability, and the inherent structure and relationships
of the original data. In this context, various architectures have been employed
with Diffusion Models [23], Generative Adversarial Networks (GANs) [21], and
Variational Autoencoders (VAEs) [22] being some of the most prominent.

Diffusion models offer a significant advantage in terms of training stabil-
ity compared to GANs [23,24], which are known for their challenging training
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process due to the adversarial nature of the method. This competitive process
between the generator and the discriminator in GANs can lead to issues such as
model collapse, where the generator only produces a limited subset of possible
data [24]. On the other hand, although VAEs are more stable than GANs, they
often generate less precise data due to the regularization of variability, which can
limit the visual quality or accuracy of the generated data [23]. Diffusion
models, however, avoid these issues by diffusing noise into the data during
training and learning to reverse this process in a controlled manner. A crucial
aspect of diffusion models is their ability to capture both the global and local
structure of the data, making them especially suitable for applications where
preserving relationships and structural coherence is essential. While GANs are
effective in capturing complex patterns, they may struggle to maintain the
global structure of the data. VAEs, though useful for representing the overall
distribution, may sacrifice fine details due to regularization [25].

In this regard, diffusion models stand out for offering a more interpretable
process in data generation, making easier to understand how synthetic data is
generated from a probabilistic perspective. Thus, diffusion models represent a
robust and versatile option for synthetic data generation, overcoming some of
the inherent limitations of GANs and VAEs. Additionally, their stability during
training, ability to preserve data structure and relationships, and the quality
and realism of the generated data make them an ideal approach in situations
where these characteristics are critical.

3 Methodology

3.1 Incorporating Variable Order as Prior Knowledge

We used as prior knowledge the ordering of variables from the following al-
gorithms: 1) DiffAN [11]. This algorithm realizes the ordering of variables in
observational datasets considering the functional relations to be constrained as
nonlinear with additive noise (ANM). DiffAN is a topological ordering algo-
rithm that leverages diffusion techniques for learning a Hessian function to find
leaf nodes. 2) SCORE [12]. Recovers causal graphs using the score of the data
distribution in non-linear Gaussian models. In order to infer the topological or-
dering, SCORE estimates the Hessian matrix of the log-likelihood. Then, it finds
a leaf node by taking the arg min of the variance over the diagonal elements of
the Hessian matrix. 3) CAM [13]. This method was specifically designed for
high-dimensional data distributions in non-linear additive models represented
by structural equation models. In CAM the topological ordering is inferred by
finding the permutation of the graph nodes corresponding to the fully connected
graph that maximizes the log-likelihood of the data. 4) NoGAM [14]. NoGAM in-
troduces a topological ordering procedure that does not assume any distribution
of the noise terms, the data distribution follows an additive behavior.

DiFFAN, SCORE, CAM and NoGAM algorithms perform causal discovery
in a two steps procedure. Given observational i.i.d. data from an Additive Noise
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Model without latent confounders, first the method estimates a topological or-
dering of the causal variables. This partial ordering can be represented as a fully
connected graph, where every node has an incoming edge from all its predeces-
sors in the ordering. Figure 1 shows the Full DAG obtained in this step by the
algorithm SCORE. The topological ordering of the variables estimated in this
step by the SCORE algorithm is: PKC, Erk, Akt, P38, Jnk, Plcg, Mek, PIP3,
Raf, PIP2, PKA. In the same way and as shown graphically with the SCORE
algorithm, the other algorithms estimate the topological ordering of the variables
that make up the dataset used.

According with some authors [11,12], the knowledge of the topological or-
dering is already sufficient for estimating causal effects, so, we are going to take
advantage of this aspect and use this information as a priori knowledge to de-
termine the initial state in the mentioned causal discovery algorithms. We use
the common edges obtained in the first step from the order-based algorithms
previously mentioned. In this stage, each algorithm obtains a full DAG, where
we can see the hierarchy of the vertices, see Figure 1.

Fig. 1: Full DAG for the Sachs dataset (described in Section 4.1) generated in
the ordering phase by the SCORE Algorithm [12].
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3.2 Generation of Synthetic Data

In this work, we implemented a diffusion based neural network to generate syn-
thetic data from an original dataset. This approach allowed to generate new
samples that maintain inherent relationships in the original data while introduc-
ing controlled variations. The diffusion model was built using the TensorFlow
library and consists of a deep neural network with multiple dense layers. The
architecture includes five hidden layers, designed to effectively capture the com-
plex relationships present in the data. The first three layers contain 128 neurons
each and use the Rectified Linear Unit (ReLU) as the activation function to
capture the complex nonlinear relationships present in the data. The next two
layers have 64 neurons each, maintaining the model’s capacity to learn finer pat-
terns and specific details. Finally, the output layer has as many neurons as there
are variables in the original dataset, allowing the model to generate synthetic
data with the same dimensionality, ensuring that the generated data retains the
fundamental characteristics of the original dataset. The original data was nor-
malized to asset faster and more stable convergence. During the training stage,
the model learns to replicate the distributions of the original data. Once training
is complete, the model is able to generate new data that are consistent with the
patterns and relationships found in the original data.

To introduce variability Gaussian noise was applied to the data generated by
the model. This noise was introduced at different intensity levels (2, 5, 10, 15
and 20%) to simulate varying degrees of uncertainty. These noise levels allowed
to vary the similarity of the synthetic data with the original; in the experimental
results we evaluate the impact of the noise levels on learning the causal model.

3.3 Implementation

In this work we rely -with light modifications- on the package developed by Zheng
et al. [18] called causal-learn that provide access to a range of hard knowledge
constraints that can guide structure learning. This is a freeware that extends
Tetrad [19]. In causal-learn, users can specify knowledge in the form of required
and forbidden edges, via the adjacency matrix.

4 Experiments and Results

The results obtained applying the two approaches previously mentioned are pre-
sented in this section. First we describe the data sets used. Then we present re-
sults generated by the causal discovery algorithms incorporating as prior knowl-
edge the variables’ order. Next, we show the results obtained by combining the
real and synthetic data.

4.1 Datasets

In this work, we used two datasets that are commonly used to evaluate causal
discovery algorithms [11,12,13], SACHS and GAUSSIAN.
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Fig. 2: Benchmark causal graphs that correspond to the Sachs (a) and Gaussian
(b) datasets.

SACHS. It is a real dataset that measures the expression levels of multiple
phosphorylated proteins and phospholipid components in human cells related
with the immune system. It has a small network with 11 nodes and 17 edges
(Figure 2(a)). The dataset has both observational and interventional samples.
Most causal discovery approaches [11,12,13] use the dataset with 853 observa-
tional samples to evaluate their method. In this work, we used the same dataset3.

GAUSSIAN. The Gaussian dataset is integrated by 5000 samples and 7 vari-
ables of synthetic data. This is a small network of 7 nodes and 7 edges (Figure
2(b)), its distribution data has a Gaussian behavior4.

4.2 Results generated using variable orderings

In this experiment we create the adjacency matrix that represents the knowl-
edge obtained from the results generated in the first step of several order-based
algorithms (DiffAN, SCORE, CAM, NoGAM); that means, the full DAG where
the hierarchical order of the variables is observed (see Figure ??). For each algo-
rithm, the order generated is always the same, with exception of DiffAN; in this
case we realized five repetitions and chose the variable that appeared most times
in each position. We compared the causal graphs generated by the original causal
discovery algorithms vs. the models obtained by incorporating the variable or-
der, applied in two datasets: Sachs and Gaussian. The results are presented in
Tables 1 and 2.
3 Can be obtained from: https://github.com/snarles/causal/blob/master/
bnlearn_files/sachs.data.txt.

4 This network can be obtained from: https://www.bnlearn.com/documentation/
man/gaussian-test.html.
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Table 1: Metrics obtained for the Sachs dataset without and with prior knowl-
edge. Improved results are boldfaced.

Algorithm/Metric SHD Precision Recall
PC without Expert Knowledge 14 0.5433 0.5433
PC using Expert Knowledge 20 0.3076 0.2766
GES without Expert Knowledge 12 0.6153 0.5433
GES using Expert Knowledge 17 0.4444 0.5333
DirectLinGAM without Expert Knowledge 15 0.5 0.3333
DirectLinGAM using Expert Knowledge 14 0.5433 0.5433

Table 2: Metrics obtained for the Gaussian dataset without and with prior knowl-
edge. Improved results are boldfaced.

Algorithm/Metric SHD Precision Recall
PC without Expert Knowledge 5 0.5833 0.9785
PC using Expert Knowledge 9 0.3333 0.2857
GES without Expert Knowledge 11 0.1666 0.1428
GES using Expert Knowledge 9 0.3333 0.2857
DirectLinGAM without Expert Knowledge 6 0.5555 0.7142
DirectLinGAM using Expert Knowledge 5 0.8777 0.2857

According to these experiments, we observe some improvement in SHD in
the case of DirectLinGAM for Sachs, and GES and DirectLinGAM for Gaus-
sian. Figure 3 illustrates the graphs for Sachs estimated by the causal discovery
algorithms (PC, GES, Direct-LiNGAM), when prior knowledge is considered.

Fig. 3: Causal graphs for Sachs generated by incorporating prior knowledge to
PC (a), GES (b) and DirectLiNGAM (c).
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4.3 Results obtained using synthetic data

In this section we present the results obtained by generating synthetic data for
the Sachs dataset. The model generated 2000 values for each of the 11 variables
based on the data of the original SACHS dataset, adding the following noise
percentages: 1, 5, 10, 15, 20 and 25. Real and synthetic datasets were utilized
individually and mixed taken different proportions of each one. Table 3 depicts
the results using the PC and GES algorithms with only synthetic data with a
sample size of 853. According this results, we observe that the synthetic dataset
equals the values obtained when using the original dataset in three cases (noise
of 1%, 5%, and 10% (only the PC algorithm)). Therefore, we can assume that
the synthetic data presents a similar behavior to the real data for some noise
levels.

Table 3: Metrics obtained applying PC and GES with only synthetic data. Re-
sults equal to those obtained with the original dataset are boldface.

Noise percentage / Metrics SHD Precision Recall
Noise 1%
PC 14 0.5333 0.5333
GES 12 0.6363 0.4666
Noise 5%
PC 14 0.5333 0.5333
GES 12 0.6666 0.4
Noise 10%
PC 14 0.5384 0.4666
GES 13 0.5714 0.5333
Noise 15%
PC 16 04615 0.4
GES 14 0.5384 0.4666
Noise 20%
PC 16 0.4615 0.4
GES 13 0.5625 0.6

The results of the models estimated by the PC, GES and Direct-LiNGAM
algorithms, when using combined data from the Sachs dataset with 853 sam-
ples and synthetic data gradually added in different proportions, are shown in
Tables 4 (5% noise), 5 (10% noise), and 6 (15% noise). The metrics indicate
that the PC algorithm outperform the results by using only real data in four
combinations, GES improves in one combination and the Direct-LiNGAM out-
perform the metrics reached in real dataset in two combinations. According to
this results, synthetic data has the potential to improve the performance when
combined with real data, depending on the amount of noise and the algorithm.
Additional results are presented in Appendix A.
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Table 4: Results generated by using the original Sachs dataset and adding grad-
ually synthetic data with 5% noise. The algorithms applied are PC, GES and
DirectLiNGAM. Improved values are boldfaced.

Data and Algorithms / Metrics SHD Precision Recall
10% synthetic data added
GES 12 0.6153 0.5333
PC 12 0.6 0.6
DirectLiNGAM 14 0.5555 0.3333
20% Synthetic data added
GES 12 0.6153 0.5333
PC 14 0.5333 0.5333
DirectLiNGAM 14 0.5555 0.3333
50% synthetic data added
GES 15 0.5 0.4666
PC 15 0.5 0.6
DirectLiNGAM 16 0.4285 0.2
70% Synthetic data added
GES 17 0.4166 0.333
PC 16 0.47 0.5333
DirectLiNGAM 18 0.333 0.2

Table 5: Results generated by using the original Sachs dataset and adding grad-
ually synthetic data with 10% noise. The algorithms applied are PC, GES and
DirectLiNGAM. Improved values are boldfaced.

Data and Algorithms / Metrics SHD Precision Recall
10% synthetic data added
GES 12 0.6153 0.5333
PC 14 0.5294 0.6
DirectLiNGAM 16 0.4444 0.2666
20% Synthetic data added
GES 12 0.6153 0.5333
PC 12 0.5882 0.6666
DirectLiNGAM 15 0.5 0.333
50% synthetic data added
GES 11 0.6428 0.6
PC 16 0.4719 0.6666
DirectLiNGAM 17 0.4 0.2666
70% Synthetic data added
GES 12 0.6153 0.5333
PC 13 0.5555 0.6666
DirectLiNGAM 16 0.4444 0.2666
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Table 6: Results generated by using the original Sachs dataset and adding grad-
ually synthetic data with 15% noise. The algorithms applied are PC, GES and
DirectLiNGAM. Improved values are boldfaced.

Data and Algorithms / Metrics SHD Precision Recall
20% Synthetic data added
GES 13 0.5833 0.5333
PC 14 0.5333 0.5333
DirectLiNGAM 17 0.4 0.2666
50% synthetic data added
GES 13 0.5714 0.5333
PC 13 0.5714 0.5333
DirectLiNGAM 15 0.5 0.3333
70% Synthetic data added
GES 12 0.6 0.6
PC 15 0.5 0.6
DirectLiNGAM 15 0.5 0.3333

5 Conclusions

The present work proposed two approaches to deal with scarce data in causal
discovery. First, we incorporate as prior knowledge the variable order provided by
four ordering-based algorithms (DiffAN, SCORE, CAM, NoGAM) into different
causal discovery algorithms. The results obtained with the Sachs and Gaussian
datasets, demonstrate that in some cases it is possible improve the results of the
estimated graph. In the second approach, we generate synthetic data based on a
diffusion technique. The experimental results indicate that: i) only synthetic data
is capable of generating results comparable with the real data; ii) the combination
of real and synthetic data can improve the results with only real data, the gain
depends on the algorithm and the amount of noise.

As future work we plan to combine both approaches and apply them to
learning the structure of gene regulatory networks.
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A Additional Results with Synthetic Data

The values reported in Tables 7 and 8 were obtained by combining real and
synthetic data with different noise proportions, applying the PC and GES algo-
rithms, respectively. The combined data equals the number of 853 samples. It
is observed that the PC algorithm equals, but does not exceed, the value gener-
ated with only real data. When the GES algorithm is applied to these combined
data, it is observed that in two combinations (noise 10% and noise 15%) the
value obtained by using only real data is outperformed.

Table 7: Metrics obtained applying the PC algorithm and combining real with
synthetic data considering different proportions of noise. Sample size with com-
bined dataset is 853.

Noise percentage / Metrics SHD Precision Recall
Noise 1%
Real20%-Synthetic80% 14 0.5333 0.5333
Real50%-Synthetic50% 15 0.5 0.4666
Real80%-Synthetic20% 15 0.5 0.4666
Noise 5%
Real20%-Synthetic80% 17 0.4285 0.4
Real50%-Synthetic50% 14 0.5333 0.5333
Real80%-Synthetic20% 16 0.4615 0.4
Noise 10%
Real20%-Synthetic80% 18 0.4285 0.6
Real50%-Synthetic50% 14 0.5333 0.5333
Real80%-Synthetic20% 16 0.4666 0.4666
Noise 15%
Real20%-Synthetic80% 15 0.5 0.5333
Real50%-Synthetic50% 16 0.5333 0.5333
Real80%-Synthetic20% 14 0.5333 0.5333
Noise 20%
Real20%-Synthetic80% 15 0.5 0.4666
Real50%-Synthetic50% 17 0.45 0.6
Real80%-Synthetic20% 16 0.4666 0.4666
Noise 25%
Real20%-Synthetic80% 18 0.4285 0.6
Real50%-Synthetic50% 18 0.421 0.5333
Real80%-Synthetic20% 20 0.3809 0.5333
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Table 8: Metrics obtained applying the GES algorithm and combining real with
synthetic data considering different proportions of noise. In bold appears the
combination that reach the same result as real dataset and in cursive bold the
combination that improve the use of only real dataset.

Noise percentage / Metrics SHD Precision Recall
Noise 1%
Real20%-Synthetic80% 14 0.5333 0.5333
Real50%-Synthetic50% 12 0.6153 0.4666
Real80%-Synthetic20% 12 0.6153 0.4666
Noise 5%
Real20%-Synthetic80% 13 0.6 0.4
Real50%-Synthetic50% 12 0.6153 0.5333
Real80%-Synthetic20% 12 0.6353 0.4666
Noise 10%
Real20%-Synthetic80% 11 0.625 0.666
Real50%-Synthetic50% 12 0.6153 0.5333
Real80%-Synthetic20% 12 0.6353 0.4666
Noise 15%
Real20%-Synthetic80% 12 0.6363 0.4666
Real50%-Synthetic50% 10 0.7272 0.5333
Real80%-Synthetic20% 14 0.5333 0.5333
Noise 20%
Real20%-Synthetic80% 14 0.5333 0.5333
Real50%-Synthetic50% 12 0.6153 0.5333
Real80%-Synthetic20% 12 0.6153 0.5333
Noise 25%
Real20%-Synthetic80% 16 0.4666 0.4666
Real50%-Synthetic50% 14 0.5384 0.4666
Real80%-Synthetic20% 14 0.5384 0.4666
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Abstract. We explore the problem of causal discovery between text
pairs. We propose a new method called eCOLGAT (edge Classification
through One-cLass Graph ATtention autoencoder) that exploits hy-
pergraphs to better learn the representation of edges (causal relations),
graph attention networks to perform edge classification in causal graphs,
one-class learning to better model the problem and reduce the labeling ef-
fort, and interpretability to improve the understanding of the causal dis-
covery learning process. eCOLGAT outperformed other one-class meth-
ods and large language models (state-of-the-art for causal discovery),
proving to be a promising method for causal discovery in text pairs.

Keywords: Event Causal Discovery · One-Class Classification · Graph
Neural Networkds · Text Pair Causal Discovery.

1 Introduction

Understanding an event’s causal relations is a challenging task that directly im-
pacts society because this information can be applied in government analyses
through decision-makers to reduce harm to society [11]. Although the vast ma-
jority of research and applications in causal discovery focus on effect inference
tasks, the growing prevalence of textual event reporting in society has intro-
duced new challenges and opportunities. Thus, there is an increasing demand
for causal discovery methods specifically tailored to textual data. In particular,
we are interested in binary classification tasks that address the causal relation-
ship between two textual statements. For example, does a “weakening economic
environment” cause “rising unemployment rates”? This task is called causal dis-
covery in text pairs in the machine learning literature [8, 13, 12].

Studies have performed textual analysis to discover causality between text
pairs by exploiting the Bidirectional Encoder Representations from Transform-
ers (BERT) model [8, 13, 12]. Furthermore, considering text-based models, the
state-of-the-art (SOTA) models are Large Language Models (LLMs) [16]. Even
obtaining SOTA results, LLMs do not observe the causal relation between sen-
tences, since each pair of texts is analyzed individually. This fact can harm the
performance of the models since modeling these relations can allow the models
to explore more information. Graphs are an alternative since graphs model this
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task naturally because each node in the graph is a text, and an edge is created
between the nodes when there is a causal relation between the texts [28].

Graph Neural Networks (GNNs) have been widely used to discover cause-
effect relations in text pairs modeled by graphs [20, 22, 23]. However, we high-
light the limitation of GNNs in learning representations for edges due to biased
message passing for node representation learning [10]. Furthermore, GNN works
for causal discovery are typically based on binary learning, i.e., during training
they learn from labeled instances of causal and non-causal classes. We highlight
some gaps of binary learning, such as the need for a significant amount of labeled
instances for the algorithm learning step. Furthermore, we highlight the large
scope of non-causal relations, which makes labeling challenging [6].

We present a new method for edge classification through one-class learning
(OCL) in graphs. The method is called eCOLGAT (edge Classification through
One-cLAss Graph ATtention autoencoder). eCOLGAT is based on hypergraphs
that improve representation learning through GNNs for edges since they trans-
form edges into nodes and thus GNNs can learn better representations [10].
Furthermore, we propose to model the problem of causal discovery in text pairs
through OCL since, in OCL, the algorithm trains with only one class (causal rela-
tions) and can predict two (causal or non-causal relations). In this way, covering
the entire scope of non-causal relations is unnecessary, and the user’s labeling
effort is reduced since it only labels causal instances [24, 4]. In this sense, we base
eCOLGAT on the SOTA loss functions for GNNs and OCL [7, 29]. Finally, we
explicitly learn three-dimensional representations to introduce interpretability
in eCOLGAT naturally. In summary, our contributions are:

1. We model causal discovery between text pairs through one-class learning,
providing labeling advantages and more natural modeling for the problem.

2. We model causal discovery between text pairs through hypergraphs to
better exploit graph neural networks’ representation learning for edges.

3. We introduce interpretable representation learning on hypergraphs through
graph neural networks and one-class learning for causal discovery.

2 Related Work

Hassanzade et al. [8] is one of the pioneering studies in causal discovery be-
tween text pairs using language models based on deep neural networks. The au-
thors propose an unsupervised method based on the pre-trained BERT language
model called NLM-BERT. First, the authors generated embeddings for a corpus
of 17 million causal sentences using Bidirectional Encoder Representations from
Transformers (BERT). Second, the method generates embeddings for text pairs
to answer whether the first text causes the second. Using a technique based
on cosine similarity between the top k similar embeddings, NLM-BERT gener-
ates two scores and compares these values with a threshold to decide whether
there is causality between the texts. The authors obtained an f1-score of 67%,
outperforming four other methods in the Risk Models dataset.
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Kayesh et al. [13] proposed fine-tuning the BERT model and its variations
to detect causality. The authors fine-tuned with a semi-supervised dataset of
100,000 pairs of causal and non-causal sentences. The authors compared their
results with the results of Hassanzade et al. [8]. The developed methods could
not outperform NLM-BERT, obtaining an f1-score of 66% on the Risk Models
dataset. In the same line of research, Kayesh et al. [12] extended the work of
Kayesh et al. [13] by adding another training dataset of 197,000 sentence pairs,
three new methods, and three combinations of these methods to detect causality,
and used a causality graph through each of the training sets (197,000 and 100,000
sentence pairs). The proposal of Kayesh et al. [12] is based on a knowledge fusion
that fuses representations generated in two stages: extraction of causal features
(embedding generation through the graph) and extraction of contextual features
(embedding generation through attention mechanisms). For the Risk Models
dataset, the new model trained on the set of 100 thousand sentence pairs could
not outperform NLM-BERT, obtaining 66% of f1.

The state-of-the-art (SOTA) for causal discovery in textual data is through
large language models (LLMs) [16]. LLMs are pre-trained models on a corpus
with trillions of words capable of generating text from an input text. In this
sense, LLMs can be queried in natural language whether one sentence causes
another to work as causal discovery models. In this sense, the PyWhy-LLM
library was developed1. Other methods that also obtain SOTA results for causal
discovery are graph neural networks (GNNs) methods since graphs express the
causal relations explicitly, and GNNs obtain SOTA results in graphs [20, 22, 23].

Minghim et al. [20] obtain contextualized embeddings for the words used
to build a causal graph. The authors used a gated GNN and recurrent neural
network decoder for graph neural network encoding. Finally, a fully connected
neural network was used for Event Causality Identification binary classification.
The model outperformed baselines, including the BERT model. Sakaji et al. [22]
is another study that explores BERT and GNNs. This work explored Graph At-
tention Networks, pointing out improvements in relation to graph convolutional
networks. Finally, the authors used two fully connected neural networks to clas-
sify sentences as cause and effect separately. The model outperformed baselines,
including the BERT model. Finally, Sasaki et al. [23] perform edge classification
in the causal graph through GNNs, in which the edges are the causality relations
and the nodes are the sentences. A classifier was used in the final layer of the
GNN. The authors do not compare with baselines but obtain 98% of f1.

Text-based methods (BERT and LLM) do not explore information about
the relations between sentences because they do not model the data through
graphs. Even using graphs in the strategy, Kayesh et al. [12] do not use graphs
as the main part of the method nor GNNs, obtaining inferior results than text-
based methods. GNNs explore this relational information and can explore textual
information because they need an initial representation for the texts. On the
other hand, GNNs focus on node message passage, i.e., in the sentences and
not in edges, in which the classification will be performed, thus making causal

1 https://github.com/py-why/pywhy-llm/tree/main
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discovery difficult. Furthermore, we highlight that GNNs are explored as binary
supervised methods, i.e., they require labeling of causality and non-causality,
making knowledge discovery difficult since labeling what is not causal is costly
due to lack of scope. In this sense, in the next section, we present a method
based on hypergraphs and one-class learning for causal discovery in text pairs.

3 eCOLGAT: edge Classification through One-cLAss
Graph ATtention autoencoder

We propose a novel method called edge Classification through One-cLAss Graph
ATtention autoencoder (eCOLGAT). Our method for causal detection in text
pairs is based on hypergraphs, one-class learning (OCL), and graph neural net-
works (GNNs). Our method presents several novelties for causal discovery be-
tween text pairs. First, eCOLGAT is a pioneering one-class method for causal
discovery. Second, using hypergraphs with graph neural networks for causal dis-
covery in text pairs is also novel. Third, exploiting three-dimensional represen-
tation learning to provide interpretability for causal discovery in text pairs is
another novelty of our method.

Hypergraphs lead better with the edge-representation gap through GNNs.
eCOLGAT explores a state-of-the-art one-class loss function to encapsulate causal
relations closer to the center within the sphere. Our proposal learns a new three-
dimensional latent space to provide interpretable learning, where causal relations
are positioned inside a sphere and non-causal relations outside. We learn the new
space through a graph attention autoencoder to explore the reconstruction loss
as a constraint to the sphere loss function and the attention mechanism to learn
better representations for the edges. Finally, our final loss function combines the
sphere loss function with the reconstruction loss function. Figure 1 presents an
eCOLGAT illustration.

Graph Neural Network
with GAT Layers

Causal Graph Causal HyperGraph Representations

Â* =

0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

Causal Relation

Unlabeled Relation

Fig. 1. Our proposed method eCOLGAT. We show all the steps from eCOLGAT:
hypergraph generation, representation learning through GAT, one-class sphere loss
(Locl), and GAE loss (Lgae).

Causal discovery between text pairs can be defined as a binary classifier with
two inputs that output a causal or non-causal label. We define {s1, s2, s3, ..., sm} ∈
S as a set of m natural language sentences and {causal, non−causal} ∈ C as the
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set of classes. This classifier can be defined as a function f : S → C that maps
two text pairs (si, sj) ∈ S to the causal or non-causal label. In this case, S ∈ Rd

represents the sentence feature space. We define one-class learning for causal dis-
covery on text pairs as the function f∗ from a training set with only causal labels
{((s1, s2); causal), ((s5, s3); causal), ..., ((si, sj); causal)} that approximates the
unknown mapping function f .

In the context of this work, S ∈ Rd will be a representation generated by
Bidirectional Encoder Representations from Transformers (BERT) for each of
our sentences, where d has value 384 [21]. Given the limitations of text-based
models, this study models causality pairs through a directed graph. A directed
graph is formally defined as G = (V,A), where each node vi ∈ V and A is the
adjacency matrix containing relations between nodes. Thus, V ≡ S, i.e., the
sentences are the nodes, and A contain the causal and non-causal relations [17].
Our method also exploits GNNs, state-of-the-art methods for different tasks,
including node classification [9]. Due to the limitation of GNNs in learning edge
representation and classification, this study explores the use of hypergraphs to
model causality in graphs [10].

We transform each edge into a node to transform our directed graph into a
directed hypergraph. Thus, when a node vi was connected to node vj , we create
a node vo (which we will call here node-edge) and connect vi with vo and vo with
vj [10]. In this way, GNNs can be explored without the limitation of message
passing for edges because the edges are now nodes. We define a hypergraph for
causal discovery as G∗ = (V∗,A∗), where V∗ is the nodes set V plus the edge set
of G and A∗ is the adjacency matrix of the hypergraph with the new generated
relations [10]. Another point is the need for GNNs in each node to have an initial
representation. In the case of our proposal, part of the set V∗ (the V set) has the
initial representation of BERT, but the nodes-edge does not. Thus, to use GNNs,
we add the average of the adjacent nodes-edge as an initial representation of the
nodes. In the above example, vo = avg(vi,vj).

We exploit GNNs to learn representations in our causality hypergraph. The
GNNs consider the structured representation of each node vi ∈ V ∗ and the
adjacency matrix A∗ as input for the representation learning process. Therefore,
g(V ∗,A∗;W) represents a GNN with trainable weights W = {W (1), · · · ,W (L)}
in L hidden layers. Formally, for the l-th layer, the GNN propagation can be
summarized as follows [26]:

H(l+1) = g(H(l),A∗;W (l)), (1)

in which H(l) is the input to the l-th GNN layer, and H l+1 is the output of
this layer. The representations V ∗ are the inputs for the first layer, i.e., V ∗ ≡
H(0). In this sense, H(L) are the learned embeddings for each node. GNNs learn
representations H(L) by aggregating information from neighbors.

We chose Graph Attention Networks (GAT) [3] as GNNs, given their im-
proved performance in node classification tasks, including causality discovery
[22]. The GAT learns the most important edges through the attention mecha-
nism [3], i.e., the GAT has attention to the main relations in the graph, improving
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information aggregation. The GAT aggregation step can be defined by Equation
2 [3]:

hl
vi

= σ


 1

K

K

k

∑

=1 v

∑

j∈N(vi)

αk
ijW

khl−1
vj


 , (2)

in which hl
vi

is the aggregation result of the vi neighbors defined as Nvi , and hl−1
vj

is the feature vector of the node vj at the l−1th layer. W k are the GAT weights
associated with the head k. K is the number of heads in the GAT, and αk

ij is
the attention computed bu the k− th attention head defined by the Equation 3.

αij =
exp(a⊺LeakyReLU(Whl−1

vi
||Whl−1

vj
))

∑
vu∈N(vi)

exp(a⊺LeakyReLU(Whl−1
vi ||Whl−1

vu ))
, (3)

in which, a is the shared attention mechanism, (·)⊺ represents transposition and
|| is the concatenation operation.

GNNs with sphere loss functions are state-of-the-art for one-class graph neu-
ral networks [27, 7]. These methods learn hL

vi
encapsulating the nodes of interest.

To detect causality through our hypergraph, we explore this strategy [7]. We use
the sphere loss function Locl defined in Equation 4 [7].

Locl(W ) =
1

|V in|

|Vin|∑

i=1

{
oi + 1, if oi > 0
exp(oi), otherwise , (4) oi = ∥h(L)

vi
−c∥2−r2. (5)

in which equation 5 represents the value indicating whether the interest instance
vi is within the hypersphere with radius r and center c and V in are the set of
interest nodes-edges in our hypergraph (with the causal class).

By using only Locl, all nodes will converge to the center. In this sense, follow-
ing the work of [7], we use our GAT layer in a graph autoencoder (GAE) since
GAEs have an unsupervised loss function that is a constraint to mitigate the
collapse of the sphere. Thus, we combine the sphere loss function with the loss
function of GAEs [7], which obtained superior and state-of-the-art results com-
pared to other methods [27]. A GAE uses GNN layers as an encoder and an inner
product of the latent representation as a decoder to learn node representations.
Equation 6 describes a GAE [14]:

GAE =

{
Encoder : H(L) = g(V∗,A∗;W)

Decoder : Â∗ = σ(H(L) ·H(L)⊺)
, (6)

in which σ(.) is a logistic sigmoid function. The GAE loss function Lgae is de-
fined in Equation 7 (binary cross entropy loss applied in the adjacency matrix).
Therefore, our final loss function is defined by: L = Locl + Lgae.

Lgae(W ) = − 1

|V |

|V |∑

i=0

|V |∑

j=0

(A∗
ij · logÂ∗

ij + (1−A∗
ij) · log(1− Â∗

ij)). (7)
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We show the causal graph, causal hypergraph, the GAT step for representa-
tion learned in the hypergraph, the sphere loss, and GAE loss. Even though it is
possible to understand the model’s decision by observing a sphere and instances
inside the sphere (causal nodes-edge) and outside the circle/sphere (non-causal
nodes-edge), it is challenging to interpret the learning that generated this de-
cision, since we cannot visualize the representations generated during learning
if the dimension is greater than three. On the other hand, with representations
in three dimensions, we can observe and interpret the representations generated
during learning. In this sense, we bias eCOLGAT learning so that our method
learns representations in size three to provide interpretability for representation
learning in the scenario of one-class learning for causal discovery in text pairs.

4 Experimental Evaluation

This section presents the experimental evaluation of this article. We present the
used dataset, experimental settings, results, and discussion. Our research goal is
to demonstrate that our eCOLGAT proposal outperforms other SOTA methods
for causal discovery in text pairs. Another goal is to demonstrate that our method
learns low-dimensional representations, providing interpretability for the causal
discovery scenario. The experimental evaluation codes are publicly available2.

4.1 Dataset

There are some benchmark datasets for detecting causality between text pairs,
such as the three explored by Hassanzadeh et al. [8]. We used the largest of
them to perform the empirical evaluation. The other two are very small, as they
have only 160 and 59 causal pairs, making them unfeasible to train our one-class
learning model. In this sense, we explored the Risk Models dataset [8].

Hassanzadeh et al. [8] explored models built by expert analysts to configure a
decision support system [25] as a source of causal knowledge by human experts.
The models are graphs in which the nodes are texts represented by descriptions
of conditions or events, and the edges show causal relations. The models are
based on enterprise risk management, expert knowledge, literature study, and
reports. The authors created the cause-effect pairs dataset by transforming each
edge in the graph into a pair of texts with the causal label. Finally, the dataset
has 368 causal pairs with 223 unique cause/effect sentences. For the non-interest
class, the authors randomly chose 368 pairs to be non-causal.

4.2 Experimental Setting

We focus only on unsupervised and one-class methods due to the difficulty of
creating a large enough training set with reasonable quality and coverage. We
compare the eCOLGAT with the state-of-the-art text-based methods for causal
2 https://github.com/GoloMarcos/eCOLGAT
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discovery [16]. We compare our methods with five large language models us-
ing the strategy of Pywhy-LLM library. Different LLMs have been proposed in
the last three years, and they have differences that generate advantages and
disadvantages for each model [30]. We use the 5-fold cross-validation for our ex-
periments. We use four folds of the causal class to train, the remaining fold to
test, and one fold of the non-causal class to test. Finally, we use the f1-macro
to compare all models.

We explore in our methodology four families of LLMs open-source: the LLM
from meta (LLaMa) [18], from Microsoft (Phi) [19], from Google (Gemma) [5],
and from Alibaba Cloud (Qwen) [2]. Each LLM has a number of parameters:
Llama 3 (8 and 70 billion of parameters), Phi 3 (14 billion of parameters),
Gemma 2 (27 billion of parameters), and Qwen 2 (7 billion of parameters).
We also compare eCOLGAT with one-class methods since we have an initial
representation for each sentence (BERT embedding) and can generate an initial
representation for causal relations (average of causal and effect sentences). In
this sense, we explore two one-class methods: One-Class Support Vector Ma-
chines (OCSVM) [1] and Isolation Forest (IsoForest) [15]. We use the following
parameters for the methods:

– LLMs: parameter-free;
– OCSVM: kernel = {rbf, poly, sigmoid, linear}, ν = {0.05 ∗ b}, b ∈ [1..19],

and γ = { scale, auto };
– IsoForest: nº of estimators = {1, 2, 5, 10, 50, 100, 200, 500}, maximum sam-

ples and maximum features = {0.1 ∗ b}, b ∈ [1..10];
– eCOLGAT: radius - {0.35, 0.45, 0.5}, epochs = {700, 1000, 1500}, heads for

GAT = {1, 2, 3}, learning rate = {0.001, 0.0001, 0.0005}.

4.3 Results and Discussion

Table 1 presents the results of our study. We present the f1-macro for all folds.
We also present the average f1 for the seven models explored and eCOLGAT.
Higher values are in bold (best models). The second-highest values are underlined
(second-best models). eCOLGAT outperforms the other two OCL methods since
it obtained the higher f1. OCSVM obtained the second-best results, followed by
Phi 3 and LLaMa 3 (70b). LLaMa 3 (8b) obtains the worst f1, followed by
IsoForest and Qwen 2. Compared to LLM models, we highlight OCL models
with state-of-the-art results and outperform these models.

Our method obtained the better f1-macro in all analyzed folds compared
to other methods. In addition, we obtained a 10% gain from the second-best
model (OCSVM) and 25% from LLM models (Phi 3). It is worth mentioning
that the second-best model also had a significant gain of 6% from LLM models,
justifying the use of one-class learning for causal discovery in text pairs. Another
point of attention in the results is Isolation Forest, which obtained a performance
comparable with the other LLM algorithms. This shows that one-class learning
is promising, but the choice of algorithm is important.
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Table 1. f1-macro for each method in the five folds and the average. The best results
are in bold, and the second best are underlined.

Models Folds Average
1 2 3 4 5

LLaMa 3 (8b) 0.338 0.349 0.365 0.374 0.337 0.353
Phi 3 (14b) 0.652 0.612 0.580 0.585 0.657 0.618
Qwen 2 (7b) 0.497 0.467 0.516 0.492 0.524 0.499
Gemma 2 (27b) 0.451 0.521 0.502 0.502 0.556 0.508
LLaMa 3 (70b) 0.511 0.596 0.506 0.568 0.553 0.548
BERT + OCSVM 0.634 0.659 0.659 0.688 0.718 0.672
BERT + IsoForest 0.480 0.492 0.477 0.463 0.539 0.493
eCOLGAT 0.764 0.811 0.707 0.766 0.804 0.771

Typically, the number of LLM parameters influences the performance gain, as
shown in other task performances considering LLMs. In the task explored in this
study, models with fewer parameters such as Phi 3 obtained better performance
than models with more parameters such as LLaMA 3 with 70 billion parameters
or Gemma with 27 billion. Therefore, choosing LLMs for causal discovery in text
pairs is also not trivial.

Figure 2 presents the confusion matrices for eCOLGAT and all baseline meth-
ods. The rows of the confusion matrix represent the true labels, while the columns
represent the predicted labels. The cells of the main diagonal are the true pos-
itives (TP) and true negatives (TN), and the cells of the secondary diagonal
are the false negatives (FN) and false positives (FP), where positive means our
causal class and negative means the non-causal class. Thus, the higher the VP
and VN values, the higher the accuracy, and the higher the FN and FP values,
the higher the errors.

eCOLGAT BERT + OCSVM BERT + IsoForest Phi 3

LLaMa 3 - 8b LLaMA - 70b Gemma 2 Qwen 2

Fig. 2. Confusion Matrix for each method with the sum of the five folds. Higher values
are in dark blue, and smaller values are in light blue.
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eCOLGAT obtained the highest VN value and the lowest FP value, i.e.,
it correctly predicted more non-causal relations. LLaMA 3 (8b) obtained the
highest VP value and the lowest FN value, i.e., it correctly predicted more causal
relations. On the other hand, these correct predictions are due to the model’s
bias for this class. Note that it obtained the highest FP value and the lowest
VN value, i.e., it predicted all instances for the causal class. This behavior was
also observed in other models, such as IsoForest, Gemma 2, and Qwen 2. Even
though it did not obtain the best VP and FN values, we emphasize that our
model balanced its values, resulting in better classification performances.

We present the representations generated by the eCOLGAT learning to
demonstrate the interpretability of our method. In this sense, Figure 3 presents
the eCOLGAT representations for the node-edges in our hypergraph focusing on
the learning process. In the real world, we can show the video of the learning
process since we can plot all learning epochs without processing the representa-
tion (our learned representations have three dimensions). The epochs are 30, 70,
110, 120, 140, 240, 280, and 360. Purple points represent the causal edges, and
yellow points represent the non-causal edges.

Fig. 3. Interpretability plot considering the three-dimensional last layer learned rep-
resentations of eCOLGAT in the second fold. The colors indicate the causal (purple)
and the non-causal (yellow) classes.

We observe the learning process of our proposal through eCOLGAT inter-
pretability, as shown in Figure 3. In the initial steps, we observe eCOLGAT fo-
cusing on graph reconstruction (loss Lgae). In the next steps, we observe learning
through the two losses since the causal node-edge gets closer to the sphere while
non-causal node-edge instances are outside the sphere. In the final steps, we
observed that the one-class loss Locl encouraged the instances to continue com-
ing to the sphere center while the Lgae maintained the non-causal node-edges
outside the sphere.
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5 Conclusion and Future Work

We propose eCOLGAT, a one-class GNN for causal discovery through edge clas-
sification. eCOLGAT explores a hypergraph to improve the edge representation
learning and explores GAT as the GNN layer. Our eCOLGAT is also based on
the SOTA sphere loss function for OCL and the reconstruction loss function.
eCOLGAT explores three-dimensional representations during classification, pro-
viding interpretability for learning causal discorevy on text pairs.

Our experiments show that LLMs still have limitations in classifying causal
relations, making it important to consider alternative representations. The pro-
posed method incorporates both textual features from pre-trained models and
relations between different cause-effect pairs, outperforming other LLM and OCL
methods. In future work, we intend to explore a heterogeneous version of eCOL-
GAT on more causal text pair datasets, as well as incorporate classic effect in-
ference tasks beyond textual data by mapping their attributes through natural
language descriptions and modeling them in graphs.
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Abstract. The design of incentives that modifies the behavior of self-
interested agents to optimize the performance of a Multi-Agent System
(MAS) remains a significant challenge. This is mainly due to the fact that
after modifying the agents’ rewards by incentives, the resulting system
outcomes and changes to the agents’ joint behavior are generally diffi-
cult to predict. Multi-armed bandit approaches in online learning repre-
sent interesting solutions to incentive design via exploration–exploitation
strategies. However, the design of incentives for MAS that exploit causal
feedback to make inferences about the performance of incentives remains
uncharted territory, and the incorporation of causal reasoning in this
context is an open problem. This paper introduces a way for integrat-
ing causal inference to solve dynamic incentive design problems in MAS,
using Dynamic Causal Bayesian Optimization (DCBO). We use a gen-
eralization of an important representative class within MAS, called Mi-
nority Games, to show how dynamic incentive design can be addressed
as a causal sequential decision problem incorporating causal reasoning
by using DCBO.

Keywords: Multi-agent Systems · Causal Dynamic Incentive Design
· Dynamic Causal Bayesian Optimization · Causal Sequential Decision
Process · Multi-asset Minority Games

1 Introduction

In Dynamic Incentive Design (DID) problems [12], a central institution modifies
the behavior of self-interested agents in a Multi-Agent System (MAS) to optimize
the overall performance by introducing an incentive function to modify their
individual payoffs. For instance, the central institution may want to drive the
system performance to a more desirable behavior that, e.g., maximizes revenue or
the social welfare. As an example, consider a ridesharing market MAS like Uber,
in which it is common for users in neighborhoods with low user density to waive
the platform, given that an habitual strategy among drivers is not to commit to
trips in these type of areas but to remain biddable with trips that do not take
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them to far away from high user density zones. This also prevents the market
from growing in these areas due to poor service, resulting in sub-optimal results
in this MAS. For this issue, incentives can be designed, such as subsidizing fuel
costs or giving a monetary reward for motivate services in this type of zones, to
avoid this selfish strategies of the drivers. DID problems can be formulated as a
bi-level optimization problem or equivalently as a reverse Stackelberg game [14];
in which an incentive designer agent (the principal agent), sequentially proposes
an incentive function that affects the behavior of follower agents, and adapts
sequentially this incentive function based on the followers’ responses. DID has
been a subject of interest to economics and control theory for long time [9]. In
recent years there has been an increasing interest in studying DID in machine
learning through the lens of online learning [8, 6, 11]. Other recent efforts have
adopted the agent-based simulation paradigm and have taken state-of-the-art
agent learning methods, such as Multi-Agent Meta Reinforcement Learning [15,
13, 7]. Nevertheless, to the best of our knowledge, there is no work that integrates
causal reasoning to address DID problems. The use of causal inference to make
predictions about incentive performance and solve for optimal incentives is the
main motivation for this research. Causal inference would allow to take full
advantage of data samples of observations on past incentive functions to infer
the effectiveness of new alternative interventions. We deal with the integration
of causal inference into DID problems by incorporating the Dynamic Causal
Bayesian Optimization (DCBO) framework to handle the sequential decision
process encountered by the principal agent in this scenario.

We define the main aspects of the principal-agents problem [12], the El Farol
Bar problem [3, 5], and the DCBO [1] in Section 2 below. After in section 3 we
show how to integrate DCBO to solve DID problems by setting the principal-
agents problem as a dynamic probabilistic causal model. Considering the general
causal structure of the principal-agent problem, in Section 4 we illustrate how
the structural equations can be derived from a bi-level optimization formulation
of a principal-agent problem, adopting the Multi-Asset Minority Games as an
instance for such derivation. Conclusions and future work are given in Section 5.

2 Preliminaries

2.1 The Principal-Agents Problem

We restrict our attention to the principal–agents problem of DID, in which there
is only one principal agent and a set N of followers agents, with |N | = n, in a
MAS, where the underlying model of the environment dynamics can be described
as a differential or difference equation in a continuous or discrete time MAS,
respectively1[12]. Let Jp(v

t,ut, st) be the utility function of the principal, with
Jp : V ×U1 × . . .×Un × S → R, and let {Jai(v

t,ut, st) | i ∈ [n]} be the set of
utility functions for the followers agents, with Jai : V ×U1× . . .×Un×S → R,
where V is the action space of the principal, Ui is the action space for the follower
1 In this work we focus in discrete time multi-agent systems
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agent ai, vt and ut are the decisions of the principal and the followers agents,
respectively, at time t. S is the state space of the multi-agent system, st is the
state at time t, and the system state dynamics is given by st+1 = d(vt,ut, st).
Considering a T horizon, there is a game between the principal and the followers
agents, where there is an specific order of play. For rounds t = 1, . . . , T , the
interaction protocol in the game is as follows:

1. The principal p decides and announces an incentive function γt : U1 × . . .×
Un → V with full, an estimation or no knowledge at all (as applicable) of
the utility functions of the followers agents {Jai | i ∈ [n]}.

2. Then, with knowledge of this incentive function, each follower agent ai ∈N
selects an action ut

i
∗ that maximizes their utility. So, at the end of this step,

the decisions vector ut∗ = (ut
1
∗
, . . . , ut

i
∗
, . . . , ut

n
∗
) is public to the principal

agent p, where ut
i
∗ ∈ argmaxJai(γ

t(ut),ut, st) for each i ∈ [n].

The goal of the game is to find {(vt∗,ut∗)}t ∈ argmax
∑

t∈[T ] Jp(v
t,ut, st),

i.e., maximize the principal’s cumulative utility, by selecting an incentive function
γt in a set of admissible incentives functions Γ = {γ : U1 × . . . × Un → V },
at each time t ∈ [T ]. In other words, at each round t the principal selects an
incentive function γt ∈ Γ such that the followers agents chooses an action that
leads to the maximization of the principal’s utility, which usually is equivalent
to the system utility or what is best for the multi-agent system, e.g., maximize
the social welfare, i.e., the sum of expected gains of all agents in the long run.

2.2 El Farol Bar Problem and Minority Games

In the El Farol Bar problem a set N of n agents have to decide independently
on each time t whether to go to the bar, ut

i = 1, or not go, ut
i = 0, i.e., the

action space for each agent ai is Ui = {0, 1}, with i ∈ [n]. The Farol Bar has
a capacity limit, L < n, and the bar is enjoyable only if it is not overcrowded,
i.e., only if the attendance At =

∑
i∈[n] u

t
i does not exceed L. In order to make

their decisions, agents aim to predict whether the bar will be crowded or not
on any given time t based on the past attendances. It is assumed that agents
base their predictions on the attendances of a finite number m ∈ N of past
times, and the information available to agents at time t is encoded in the string
λt =

(
ζ[(L − At−1], . . . , ζ[(L − At−m]

)
∈ {0, 1}m, where ζ(·) is the Heaviside

function, i.e., ζ[(L−At] = 1 if the bar was enjoyable (At < L) while ζ[(L−At] = 0
if the bar was overcrowded (At ≥ L) at time t.

Given information λt, each agent ai have a set Λi = {Λi1, . . . , ΛiKi} of func-
tions Λik with k ∈ [Ki] for some Ki ∈ N called strategies or predictors, that maps
information strings {0, 1}m into the binary actions set {0, 1} of go or do not go,
i.e., every strategy Λik ∈ Λi is a function such that Λik : {0, 1}m → {0, 1}.

Ranking the strategies of each agent in the El Farol Bar problem can be
approached through different learning processes, here we focus on the cumulative
utility based ranking [5]. These processes help agents evaluate and adapt their
strategies based on their performance as the game progresses. Let uλt

Λik
∈ {0, 1}
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denote the prediction of strategy Λik ∈ Λi of agent ai under the information
λt at time t, and let Ωt

Λik
be the cumulative utility of agent ai using

strategy Λik up to time t. At every time t, agent ai selects a strategy with
the highest cumulative utility Λt∗

ik ∈ argmaxΛik
Ωt

Λik
, and acts accordingly,

i.e., ut
i = uλt

Λ∗
ik

.
In order to decide which strategy to adopt on every time t, agents keep track
of their performance via the cumulative utility that is updated according to
the rule: Ωt+1

Λ∗
ik

= Ωt
Λ∗

ik
+ (1 − 2uλt

Λ∗
ik
)[At − L], with the rationale that strategies

suggesting not to go (uλt

Λ∗
ik

= 0) are rewarded when the attendance is higher than

L and punished when it is lower than L (and vice versa when uλt

Λ∗
ik

= 1).
For modeling purposes, Minority Games serve as a class of simple models

which are able to produce some of macroscopic features being observed in the
real financial markets. The basic Minority Game corresponds roughly to the
case where L = ⌊n2 ⌋ of the El Farol Bar problem, but here the agents actions
are either to buy, ut

i = 1, or sell, ut
i = 1, an specific stock, to model speculative

trading in financial markets [3, 2, 4].

2.3 Dynamic Causal Bayesian Optimization (DCBO)

A graphical causal model consist of a four tuple ⟨W ,Z, P (Z),F ⟩ and a directed
acyclic graph G, where W is the set of observed endogenous variables, Z, is a set
of exogenous variables expressing a random disturbance distributed according
to P (Z), and F = {f1, . . . , f|W |} is a set of functions known as structural
equations, such that Wi = fi(pa(Wi), Zi), for each Wi ∈ W , with pa(Wi)
denoting the parents of Wi [1]. The graph G encodes the causal relationship
between the variables in W . Within W we distinguish three different types of
variables: non-manipulative variables C, treatment variables X that can be set
to specific values, i.e., intervene them, and output variable Y that represent the
outcome of interest. In order to reason about interventions that are implemented
in a sequential manner, i.e., at each time t we decide which intervention to
perform in the system. Let Mt be a dynamic graphical causal model defined
as Mt = ⟨G1:t,W 1:t,Z1:t, P (Z1:t),F 1:t⟩, where 1 : t denotes the union of the
corresponding graphs, variables or functions up to time t, W 1:t = X1:t ∪C1:t ∪
Y 1:t. The goal of DCBO is to find a sequence of interventions, optimizing a target
variable, at each time t, in a graphical causal model Mt. Given Mt, at every
time step t, we wish to optimize Yt by intervening on a subset of the manipulative
variables Xt. The optimal intervention variables X∗

s,t and intervention levels x∗
s,t

are given by:

X∗
s,t,x

∗
s,t = argmax

Xs,t∈P(Xt),xs,t∈D(Xs,t)

E[Yt | do(Xs,t = xs,t),1t>1 · I1:t−1]. (1)

where P(Xt) is the power set of X∗
s,t, D(Xs,t) represents the interventional

domain of Xs,t, I1:t−1 =
⋃t−1

i=1 do(X
∗
s,i = x∗

s,i) denotes previous interventions,
and 1t>1 is the indicator function. The expected value is over the interventional
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distribution P (Yt | do(X∗
s,t = x∗

s,t)), given 1t>1 · I1:t−1. DCBO make the as-
sumptions of invariance of causal structure, i.e., Gt = Gt+1 for all t ∈ [T ], and
absence of unobserved confounders in G1:T [1].

3 Causal Dynamic Incentive Design

In this section we show how causal inference can be integrated in the principal-
agent problem described in Section 2. This is done by first proposing the general
causal structure Gtpap for a dynamic graphical causal model representing the prin-
cipal agent problemMt

pap. The dynamics between the principal and the follower
agents are modeled in Gtpap in the following way. The set of observed endogenous
variables is given by W 1:T = {V 1:T ,U1:T

i ,J1:T
ai

,J1:T
P }, for all i ∈ [N ], where

V 1:T is the variable representing the principal actions, U1:T
i represents the agent

i actions, J1:T
ai

represents the agents i utility function, for all i ∈ [N ], and J1:T
P

represents the utility function of the principal, all up to time T . The Figure 1
shows the directed graph Gt:t+1

pap , where the direct causal relation are show for the
variables in W t:t+1, i.e., for times or rounds t and t+ 1 of the principal-agents
protocol (see Section2), and from which all the direct causal relation for W 1:T

can be inferred. We are using the following color convention for the types of vari-
ables that appear in Gt:t+1

pap shown in Figure 1 (as well as for the next figures):
blue for the variables that are not manipulable, i.e., U1:T

i ∪ J1:T
ai

= C1:T , green
for those that are manipulable, i.e., V 1:T = X1:T and orange for the target
variables, i.e., J1:T

p = Y 1:T , at each time t.
.

Fig. 1: Gt:t+1
pap . Fig. 2: Gtpap for n = 2.

We are doing an important simplification on the graphical representation in
Figure 1 as the real dynamic graphical causal structure most contemplate one
variable for each of the agents’ action space and one variable for each of the
utility functions of each of the agents. Figure 2 shows what the structure Gtpap
would actually look like for the case of n = 2 on a given time t. In Figure 1, we are
using the variables U t

i and J t
ai

to represent all the variables for each each of the
agents’ action space U t

1, . . .U
t
n and for each of the utility functions J t

a1
, . . .J t

an

of each of the agents, respectively, to keep the drawings understandable and not
overly edged.

Figure 3 (a) shows the simplification pattern for variables U t
i and and its

causal relationship with V t. On Figure 3 (b) it is shown what this pattern rep-
resents, where the causal structure from variables U t

1, . . .U
t
n is given by an empty
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graph, i.e., no edges or causal relations between U t
1, . . .U

t
n. Figure 3 (c) shows an

instance of the other scenario where the causal structure between variables U t
i

is not an empty graph, it is shown a sub-DAG for the action variables U t
i of four

agents in this case. In some application contexts maybe important to perform a
causal discovery method to find the underlying causal structure of variables U t

i .
We leave this kind of scenario for later work.

Fig. 3: The pattern U t
i → V . Fig. 4: The directed triangle pattern.

Figure 4 (a) depicts another graphical simplification in the Gtpap shown in
Figure 1, we call it the directed triangle pattern, which represent the direct
causal relation of U t

i → V t, V t → J t
ai

, and U t
i → J t

ai
. In Figure 4 (b) it is shown

the unfold directed triangle pattern, i.e., the real structure that it represents.
Something similar occurs for the directed triangle pattern representing the direct
causal relations of U t

i → V t, V t → J t
p, and U t

i → J t
p. Another aspect that is

shown in the graph of Figure 3 (c) is that in some application contexts maybe
important to consider interventions on a subset of agents’ action space variables.
As shown in Figure 3, some U t

i variables are colored green meaning they are in
the set of manipulable variable Xt. Manipulating certain U t

i variables can be
helpful for exploring the effects of specific actions taken by a group of agents on
the causal model.

We focus in the case of no edges between the U t
1, . . . , U

t
n variables and with

none of these variables in the set of manipulable variables Xt. Given this de-
veloped causal structure Gtpap, it is possible to completely specify the DCBO
method (See Section 2) to solve a general principal-agent problem by defining
the action space of the principal V t, the action space of the agents U t

i , for
all i ∈ [n], and the structural equations F t = {f t

V t , f t
Jt
P
, f t

Jt
ai

}, for all i ∈ [n],
which have the following general arrangement due to the causal structure Gtpap:
f t
Jt
ai

= fJt
ai (vt,ut

i, ϵ
t
Ja
), f t

Jp
= fJt

p(vt,ut
i, ϵ

t
Jp
), and

f t
V t =

{
fV t

(ut
i, ϵ

t
V ), if t = 1,

fV t

(ut
i,J

t−1
p , ϵtV ), if t > 1,

where ϵtJa
, ϵtJp

, ϵtV ∈ Zt are the exogenous variables expressing a random
disturbance distributed according to P (Zt).
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The detailed definition of these structural equations for the causal dynamic
graphical modelMt

pap will depend on the application context. In the application
settings, it is a common practice to formulate a principal-agent problem as a
bi-level optimization problem [12]. Under this type of formulation of a principal-
agent problem, the utility of the principal and the agents are presented as the
objective functions of the upper level and lower level problem, respectively [14].
In Section 4, we present an interesting instance of the principal agent problem
for which we give its bi-level optimization formulation and show how from the
objective functions we can obtain directly the structural equations for theMt

pap.
It is necessary to mention that at each time t the interaction protocol between
the principal and the followers (Seen in Section 2) is respected. That is, the
principal first on step 1 decides (or chooses) an incentive function γ from a set
of possible incentive function Γ = {γ : U1 × . . . × Un → V }. Then, on step
2, with the knowledge of the principal’s selected incentive function γ, as this is
incorporated in the follower’s utility function Jai(v

t,ut
i) = Jai(γ(u

t
i),u

t
i), the

follower agents decide ut
i ∈ U t

i . After the followers agent’s decisions, on step
2, the outcome for time t is computed as the variables J t

ai
and J t

p for every
time t ∈ [T ]. This interaction protocol for each time t is shown in Figure 1 by
partitioning the vertex set of Gtpap with the sets stept1 = {V t}, stept2 = {U t

i },
and outcomet = {J t

ai
,J t

p}. In the light of all that and the given specification of
the general dynamic graphical causal model Mt

pap the agent-principal problem
can be solve by finding a sequence of interventions on variables V 1:T optimizing
the target variables J1:T

p , i.e., by computing:

vt
∗
= γt∗(ut

i) = argmax
γt∈Γ

E
[
J t
p | do(Vt = γt(ut

i) = vt),1t>1 · I1:t−1

]
, (2)

with the important remark that intervene the variable V t is to assign an
incentive function γ ∈ Γ to variable V t, representing the choose of γ by the
principal on step 1, which after step 2 gets a value vt ∈ V t by the causal
relation U t

i → V t. Moreover, the causal relation J t−1
p → V t on Gtpap stablish

the utilization of previous results for J t
p to inform the exploration for the optimal

incentive function selection, using the result of previous interventions I1:t−1. We
call Causal Dynamic Incentive Design (CDID) to the method described in this
section for solving the principal-agent problem.

4 CDID on the Multi-Asset Minority Game

We explore a generalization of the El Farol Bar problem and the Minority Game,
where agents must decide not only whether to go to or not to go to the bar or
to buy or to sell a stock but also which bar to attend or which stock to buy or
sell from a collection of bars or stocks, where each asset has its own capacity.
We call this generalization a Multi-Asset Minority Game. Let M be the number
of assets and let each asset has a capacity limit Lj with Lj < n for j ∈ [M ].
Let ut

ij ∈ {0, 1} be the decision variable indicating whether agent i decides in to
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the asset j at time t. Let µt
j =

(
ζ[(Lj −At−1

j ], . . . , ζ[(Lj −At−m
j ]

)
∈ {0, 1}m be

the string encoding the information available to agents at time t assuming finite
memory of m past times references over the asset j ∈ [M ], with At

j =
∑

i∈[N ] u
t
ij .

The information available to agents at time t is encoded in the following string:

µt =
( ⊕

j∈[M ]

µt
j

)
∈ {0, 1}m|M |,

where
⊕

j∈[M ] µ
t
j denotes de concatenation of the M strings µt

j ∈ {0, 1}m.

Let Λi = {Λi1, Λi2, . . . , ΛiKi} be the strategies set of agent ai, u
µt
j

Λik
∈ {0, 1}

denote the prediction of strategy Λik with k ∈ [Ki] for some Ki ∈ N of agent
i for asset j ∈ [M ], under the information µt

j at time t. Let U j
Λik

(t) the the
cumulative utility of agent i using strategy Λik up to time t for asset j ∈ M .
Every time t, agent i selects the strategy Λ∗

ik with the highest cumulative utility

for each asset j ∈ M , and acts accordingly, i.e., ut
ij = u

µt
j

Λ∗
ik

. Let Λ∗
ik be such

strategy in Λi, i.e.,

Λ∗
ik = argmax

Λik∈Λi

Ωj
Λik

(t),

In order to decide which strategy to adopt for each asset j ∈M on every time t,
agents keep track of their performance for each asset j ∈M via the cumulative
utility Ωj

Λik
(t) that is updated according to the following rule:

Ωj
Λ∗

ik
(t+ 1) = Ωj

Λ∗
ik
(t) + (1− 2u

µt
j

Λ∗
ik
)[At

j − Lj ],

4.1 Bi-level Optimization Formulation of the Multi-Asset Minority
Game with Incentives Design

We now extend the Multi-Asset Minority Game (MAMG) to include Dynamic
Incentive Design (DID), presenting a formulation of this Multi-Asset Minority
Game as a principal-agents problem. For this, we present the Multi-Asset Mi-
nority Game with Dynamic Incentives as a bi-level optimization problem below,
specifying the principal’s (upper level) and agents’ (lower level) objective func-
tions, each with their own constraints. The objective function of the principal is
given as follows:

(Principal) max
γt
j(uij)∈Γ

E

[∑

t∈[T ]

∑

j∈[M ]

Rj

(
At

j

)
− Cj

(
At

j , γ
t
j(uij)

)
]

(3)

s. a. γt
j(uij) =




α
(

Lj−At
j

Lj

)
≤ ωt

j if At
j ≤ Lj , where ωt

j is the budget at t.

α
(

At
j−Lj

Lj

)
if At

j > Lj , for some α > 0 ∈ R.
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where Rj

(
At

j

)
is the revenue function assuming a revenue per unit of attendance

(e.g., trading volume) for asset j, and Cj

(
At

j , γ
t
j(uij)

)
is the cost function, pre-

suming a cost per unit of attendance, and a cost per unit of incentive. Note
that we define the incentives in a way that when At

j ≤ Lj the principal offers a
subsidy which is given based on how far the attendance is from the limit, on the
other hand, when At

j > Lj the principal imposes taxes on the agents according
to the excess of attendance. The agents’ objective function is shown below:

(Agents) (u∗
ij) ∈ argmax

uij∈Uij

{
E
[∑

t∈[T ]j

∑

∈[M ]

(
(1− 2ut

ij)[A
t
j − Lj ]

)
+ γt

j(uij)

]}

i∈[n]

s. a.
j

∑

∈[M ]

ut
ij ≤ |M |, ∀i ∈ [n], ∀j ∈ [M ], ∀t ∈ [T ]. (4)

It is important to note that the above are not two independent optimization
problems, one for the primary agent’s objective function and constraints and
the other for the followers’ objective functions and constraints. Rather, it is
a single bi-level optimization problem, where an optimal solution for the lower
level problem, i.e., the one corresponding to the follower agents, is only a feasible
solution for the upper level optimization problem, the one corresponding to the
principal agent.

4.2 CDID for the Multi-asset Minority Game with Incentives
Design.

From the analysis given in Section 3, we can use CDID to solve the Multi-asset
Minority Game with incentives design by first defining the action spaces of the
principal and follower agent, i.e., variables V t, and U t

i , for all i ∈ [N ], which
for this principal-agent MAS we can state as:

V t =
{
vt = (vt1, . . . , v

t
M ) ∈ RM | vtj = γt

j(u
t
ij), for j ∈ [M ], γt

j ∈ Γ
}

U t
i =

{
ut
i = (ut

i1, . . . , u
t
iM ) ∈ {0, 1}M | ut

ij = uµt

Λ∗
ik
∈ {0, 1}, , for j ∈ [M ]

}

Subsequently, given the general structure for the dynamic causal model repre-
senting a principal-agent problemMt

pap as given in Section 3, it simply remains
to state the structural equations F t = {f t

V t , f t
Jt
P
, f t

Jt
ai

}, for all i ∈ [n]. Using the
above bi-level optimization formulation of the principal-agent problem for the
Multi-asset Minority Game with incentives design, we can set up the structural
equations F t for its dynamic causal model Mt

pap as follows:
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f t
Jp

= fJt
p(vt,ut

i, ϵ
t
Jp
) = E

[

j

∑

∈[M ]

Rj

(
At

j

)
− Cj

(
At

j , γ
t
j(uij)

)
+ ϵtJp

]
(5)

f t
Jt
ai

= fJt
ai (vt,ut

i, ϵ
t
Ja
) = E

[

i

∑

∈[M ]

(
(1− 2ut

ij)[A
t
j − Lj ]

)
+ γt

j(uij) + ϵtJa

]
(6)

f t
V t =

{
fV t

(ut
i, ϵ

t
V ), if t = 1,

fV t

(ut
i,J

t−1
p , ϵtV ), if t > 1,

=

{(
(0, . . . , 0) + ϵtJp

)
∈ RM if t = 1,

vt∗ = (vtj
∗
) ∈ RM , if t > 1, where

(7)

vtj
∗
= γt

j
∗
(ut

ij) = argmax
γt
j∈Γ

E
[
J t
p | do(V t = γt

j(u
t
ij) = vtj),1t>1 · I1:t−1

]
,

which is exactly Equation 2 from Section 3, but for each asset j ∈ [M ], where
ϵtJa

, ϵtJp
, ϵtV ∈ Zt for which we assume P (ϵtJa

) = P (ϵtJp
) = P (ϵtV )

iid∼ N (µ, σ2),
with µ = 0 and σ = 1. Observe that Equations 5 and 6, which correspond to
the structural equations of the utility variables J t

p and J t
ai

, for all i ∈ [n], are
practically the objective functions of the bi-level optimization problem for the
principal agent (Equation 3) and the follower agents (Equation 4), respectively.
Finally, an important design aspect for using the CDID framework and in par-
ticular to fully define the set V t in the MAMG with DID is to define the set of
admissible incentive functions Γ . Many variants of the Γ set can be proposed,
yet we exhibit two instances of incentive functions families that independently
each of them could be established as Γ , but also the union of both families of
incentive functions. For example, to distribute clients optimally across assets,
the principal can implement a dynamic pricing scheme by stablish a cost

DPSj(A
t
j) = bp0 + β

At
j

Lj
,

for access or buying an asset j ∈ [M ] as a function of attendance At
j , where

bp0 is the base price and β is a scaling factor. Likewise, agents could be penal-
ized for choosing overcrowded assets by defining a congestion penalty incentive
function

CPIF (At
j) = β

[
max

(
0, (At

j − Lj)
)]
,

that reduces individual utility based on attendance. Where β is a scaling
factor. Each agent choosing an asset j receives a penalty if the asset is over
capacity, incentivizing them to opt for less crowded assets.
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5 Conclusions

The generation of experimental data in the dynamic incentive design on a MAS is
expensive. In this context, such experimental data translates into testing differ-
ent incentives and measuring their effects on the multi-agent system in question.
The field of causal inference features a rich set of tools to evaluate the perfor-
mance of untested incentives and solve for optimal incentives, thereby allowing
to make the most of limited data samples, i.e., experience with past incentive
functions. That is, using observations on the MAS and data from past incen-
tive functions effect on the system, causal inference can infer the effectiveness of
new alternative interventions by evaluating post-intervention distributions and
rate different incentive functions cheaper. The main contribution in this paper
is the presentation of CDID method in which causal inference can be incorpo-
rated to deal with incentive design in MAS. For this purpose, we leverage of the
DCBO method and characterize a generic dynamic causal probabilistic model
Mpap representing a principal-agent problem in general, and show how the struc-
tural equations of this dynamic causal probabilistic model can be derived from
a bi-level optimization formulation of a principal-agents problem in MAS. An
interesting result is that in the case of homogeneous follower agents, only three
structural equations of the dynamic causal model are needed for the application
of DCBO. For the more general case, i.e., contemplating heterogeneous follower
agents MAS with g different groups of agents, it would require the formulation
of 2g + 1 structural equations of the dynamic causal model.

5.1 Future Work.

We are working in the validation this proposal using data from Agent Based
Modeling simulations [10] of Multi-asset Minorty Games and other MASs, like
traffic assignment systems, and compare with solutions based on Bayesian Op-
timization for DID [11], hoping to reach faster convergence in the search for
optimal incentives functions. In this research, we focus on a single principal with
several follower agents version of the DID, but another goodness about our pro-
posal is that it can be straightforward extended to contemplate more than one
principal agent. Moreover, it can also be extended to consider more than two
levels of hierarchy among agents, e.g., that there were principal agents at a third
level who incentivize second level principals. Additionally, the proposed frame-
work for DID may be appropriate for considering information asymmetries, such
as adverse selection. Which can be characterized as the follower agent’s utilities
being dependent on some parameter θ ∈ Θ representing the agent’s type, so the
utility functions Jai for i ∈ [n] can be expressed as Jai(v,u; θ), and θ is un-
known a priori to the principal. We intend to investigate these variants that can
be easily accommodated within our framework by incorporating new variables
into the probabilistic causal model in future research.
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Abstract. Strategic foresight has been identified as a key tool to en-
hance policymaking and guide decision-making in private and public or-
ganizations. While the potential of artificial intelligence has been recog-
nized in this domain, it has only been applied to specific tasks, and no
AI-first approach has been developed yet. Among the multiple strategic
foresight methodologies, one of the most frequently used ones is scenario
planning. Nevertheless, creating such scenarios requires specific domain
knowledge, particularly about causal relationships, to understand how
forces of change may affect potential future outcomes. In this research,
we describe some early results we obtained from semantic enrichment
performed on causal graphs extracted from media news. The experiments
were performed using ChatGPT 4o on 50 media events that correspond
to oil prices in the first quarter of 2023. The results show that when per-
forming semantic linking, different results are obtained if the extracted
causal variables or the causal relationships are considered. While there
is complete agreement regarding the assigned wiki concepts in 9% of the
cases, such agreement falls below 33% in most of the cases. Furthermore,
nearly 23% of the proposed wiki concepts do not correspond to real ones.

Keywords: Causal discovery · NLP · Graphs · Semantic enrichment ·
Strategic foresight.

1 Introduction and related work

Strategic Foresight aims to provide a structured approach to gathering informa-
tion regarding plausible futures to prepare for change adequately. It frequently
leverages experts’ knowledge regarding trends and emerging issues to understand
better how decisions and policies may influence the future and guide strategic
planning and policy-making [4]. The ability to lead to better future outcomes
has promoted an increasing adoption in the private and public sectors [12].

While artificial intelligence is increasingly being used across different do-
mains, it has only been adopted to aid in specific strategic foresight tasks [11],
and no end-to-end tool exists to (semi-)automate the complex process performed
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by domain experts. Among the most frequently used strategic foresight methods,
we find scenario planning [1], which aims to foresee relevant scenarios based on
trends and factors of influence to understand better how actions can influence
the future [14]. Building such scenarios requires identifying the driving forces
of change and possible outcomes while acknowledging the accompanying
uncertainties. Knowledge about such causal relationships and context is
currently owned by experts, who then estimate plausible outcomes. Artificial
intelligence could automate this process using LLMs and causal inference
frameworks to extract and test causal relationships and infer future
scenarios. In particular, we envision using LLMs to extract candidate causal
relationships from media news, assess whether such relationships effectively
mean a causal relationship, and merge them into a causal graph [2]. The
resulting causal graph could be analyzed, and subgraphs of interest could be
identified to build scenarios about plausible futures for human examination.

LLMs have shown promising results but face challenges in causal inference
from text due to the inherent complexity of natural language, which is often un-
structured, high-dimensional, and semantically ambiguous [9]. LLMs have been
used for causal discovery, effect estimation, and tasks like counterfactual reason-
ing. Research on causal discovery focuses on pairwise causal direction [8], though
issues arise with LLMs repeating embedded knowledge [15] or inferring causal
relations from entity order [7]. For full causal graph discovery, LLMs have been
mostly applied on datasets, where they have even outperformed baselines [10].
Among the few studies focusing on extracting causal links from the text, we
can mention [3] and [5]. Jin et al. [6] proposed an alternative approach using a
chain-of-thought prompting strategy to extract a causal graph and context (e.g.,
conditional or interventional probabilities) to perform correct causal inferences
and answer causality questions.

Gendron et al. [2] have recently described an approach leveraging LLMs for
causal relationship extraction from media news. Their approach shows promise
in extracting observed and hidden causal variables and their causal relationships.
Nevertheless, the experiments were executed only on a handful of cases and the
causal variables and relationships they extract are encoded as strings. While
encoding such knowledge as strings can sometimes provide rich expressiveness,
we consider that they could be further enriched associating them with a semantic
concept. This would allow for a normalized understanding of the causal variables
and enable further interoperation with ontologies and knowledge bases. This
work, therefore, explores on how such enrichment can be performed, and provides
a quality assessment of the causal graphs described above.

2 Experiments and results

This research is part of a wider research effort on how artificial intelligence can
be applied to enhance strategic foresight [13]. The manuscript aims to describe
experiments and results we obtained when pursuing two research goals (a) se-
mantically enrich the causal variables identified in media news by following the
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prompts described by Gendron et al. [2] and (b) assess how reliable is the se-
mantic linking obtained through LLM prompting.

Methodology The experiments were performed considering 50 media news events
related to oil prices which were reported in the first quarter of 2023 and extracted
from EventRegistry. A total of 169 causal graphs from the events were obtained
by applying the prompt described in Gendron et al. [2]. Their observed edges
and nodes were further processed to semantically enrich them. In particular, two
enrichments were performed: (i) considering the strings describing the already
extracted causal variables and (ii) considering the edge description that explains
how two causal variables are related to each other. The outcomes were then
compared to understand to what extent did (i) and (ii) lead to the same under-
standing. To that end, we measured the Jaccard similarity of the extracted wiki
concept URLs for causal variable pairs associated through a causal relationship.
Finally, we measured how many of the wiki concept URLs issued by the LLM
corresponded to real ones. The work was performed using the OpenAI ChatGPT
4o model.

Results The results we obtained from the semantic enrichment show that in most
cases the wiki concepts retrieved from the causal variables do not match the ones
described when obtained from the causal relationships. In fact, in 54% of the
cases, the Jaccard similarity was zero, in 36% of the cases the Jaccard similarity
was 0.33, and in just 9% of the cases we could observe a perfect match. We
randomly picked some cases to understand the quality of the extracted wiki con-
cepts and understand whether it would be better to consider the extracted causal
variables or rely on the causal relationships. One such example was »Influence
of Russian supply cuts on oil prices«. The causal graph prompt correctly iden-
tified that »Russian supply cuts« influence »Oil prices«. When executing the
additional prompts, the causal variables were mapped to Economy of Russia:
Natural resources and energy exports and Oil price and the causal relationship
to Oil supply and Oil prices, which is not tied to a particular country and more
accurately describes the key resource being considered in the market dynam-
ics. Finally, when assessing how many unique wiki links were valid, we found
that 204 unique links corresponded to real wiki concepts, while 59 entries were
misleading.

Conclusion and Future work Our research regarding causal extraction and coun-
terfactuals has not been tested on an extensive dataset. Further research is re-
quired to understand (i) how causal graph extraction prompts can be enhanced
to yield more accurate results, (ii) how to enhance the semantic enrichment to
avoid LLM hallucination scenarios. Future work will address this gap by (a) re-
fining the causal graph extraction, (b) enrich the semantic linking considering
domain-specific ontologies, and (c) testing the proposed approach on a dataset
spanning multiple years of media news.
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Abstract. Non-stationary time series present challenges in causal dis-
covery due to their evolving statistical properties. Existing probabilistic
causal frameworks often assume static structures or parameters, limiting
their effectiveness in dynamic environments. This research introduces
a non-stationary dynamic causal Bayesian network (nsDCBN) model
designed to iteratively detect and adapt to significant structural and
parametric shifts in time series data. The proposed method identifies
and captures these shifts using a probabilistic graphical approach. Pre-
liminary results on synthetic fNIRS data demonstrate the algorithm’s
ability to detect changes in causal structures despite noise. These find-
ings suggest potential applications in brain connectivity analysis during
neurorehabilitation, where evolving brain connectivity is crucial.

Keywords: Causal Discovery · Non-stationarity · Causal Models

1 Introduction

Stationarity is a complex concept, as many processes exhibit stationary and non-
stationary behaviors depending on the sampling context. This creates challenges
for causal discovery, where models often assume a fixed causal structure. These
assumptions are inadequate in scenarios like neurorehabilitation, where brain
connectivity evolves due to neuroplasticity.

Causality has been defined in various ways, with contributions from Granger,
Pearl, Lamport, Kosko, and others. While Pearl’s framework dominates causal
Bayesian networks, applying traditional algorithms to non-stationary processes
is insufficient for streaming data, an underexplored area.

To address this, we propose a non-stationary Dynamic Causal Bayesian Net-
work (nsDCBN) that adapts its structure in response to changes. Using Func-
tional Near-Infrared Spectroscopy (fNIRS) as a test case, we enhance signal
quality through preprocessing and detect structural shifts. We demonstrate our
model’s potential through synthetic fNIRS data with applications in neuroreha-
bilitation. This paper presents our approach and preliminary results.
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2 Methods

2.1 Synthetic Data

Synthetic data enables evaluation and validation of the proposed model before
applying it to real-world data. We have reimplemented the bilinear model for
fNIRS [1] and extended it to simulate structural and parametric changes, in-
corporating realistic noise components (e.g., motion artifacts, physiological, and
instrumental noise) [2] to mimic neural, hemodynamic, and optical responses in
fNIRS including semisynthetic data where noise from experimental data -rather
than synthetic- is added.

Fig. 1. Example of synthetic data generation based on a causal model.

The model simulates neurodynamics, hemodynamics, and optics, allowing for
benchmarking causal discovery algorithms against known ground truths [6]. This
provides a solid basis for testing noise removal and detecting structural changes
in non-stationary environments. In particular, the extended bilinear model allows
for the generation of non-stationary processes.

2.2 Non-Stationary Detection

We propose analyzing four statistical moments—mean, variance, skewness, and
kurtosis—to identify stationary to non-stationary state transitions through sta-
tistical tests (e.g., Kwiatkowski-Phillips-Schmidt-Shin). The algorithm operates
iteratively, comparing changes across overlapping and non-overlapping time win-
dows to detect emerging trends and trigger the causal discovery process. This
approach iteratively adapts to changes in structure and parameters.

2.3 Causal Discovery Framework

Once a change in the statistical moments is detected, the algorithm proceeds
to uncover causal relationships in the data. We exploit existing algorithms,
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such as CD-NOD [3], PC [5], or LiNGAM [4], to iteratively refine the causal
graph, depending on the specific characteristics of the synthetic and semisyn-
thetic datasets. This iterative approach allows for adapting the causal structure
within each time slice, improving the representation of the evolving system.

2.4 Non-Stationary Dynamic Causal Bayesian Network (nsDCBN)
Learning

The final stage of the methodology focuses on learning the non-stationary Dy-
namic Causal Bayesian Network (nsDCBN). If this is our proposal, we must
explain it in detail here. Once a causal structure is identified, it is used as prior
knowledge in subsequent iterations, allowing the model to adapt to the new
stochastic state and capture shifts in causal relationships over time. This ap-
proach requires less data to update the model.

2.5 Experiments

Validation occurs in two stages: first, using synthetic datasets to ensure align-
ment with known ground truths, and second, applying the model to observational
fNIRS data to assess its effectiveness in capturing brain connectivity changes
during neurorehabilitation. Concurrence and statistical tests will confirm the
model’s accuracy.

Performance will be assessed using structural hamming distance (SHD),
which quantifies the differences between the discovered causal structure and
the known ground truth. This ensures that the framework captures underlying
causal dynamics in non-stationary environments.

3 Preliminary Results

We generated two synthetic data sets with differing structures, each simulating
three regions. Each dataset spans 80 seconds, sampled at 10.84 Hz. To evaluate
noise robustness, we simulated synthetic noise with a 10% noise-to-signal ratio,
incorporating sources such as heart rate variability, breathing patterns, and ex-
ternal perturbations. This controlled dataset allows for precise validation of the
causal discovery models by providing known ground truths.

3.1 Non-Stationarity Detection:

The detection algorithm uses the first four statistical moments (mean, variance,
skewness, kurtosis) across overlapping and independent time windows and the
KPSS test to identify shifts from stationary to non-stationary states.

Initial validation on a synthetic sine signal with controlled amplitude changes
hinted at the algorithm’s effectiveness (Figure 2A), with reliable identification of
changes. Further testing on synthetic fNIRS data confirmed accurate detection
of structural changes in real-time, with an average time lag of ±10 seconds
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Fig. 2. Example of non-stationarity detection in (A) sine signal and (b) synthetic fNIRS
data.

in a sequence of 160 seconds (Figure 2B). Although a few false positives were
observed, likely attributable to elevated noise levels in the signal, the overall false-
positive rate remained low, indicating the algorithm’s capabilities even under
noisy conditions.

4 Conclusions

We presented a first approximation to causal discovery in non-stationary stream-
ing data, combining non-stationarity tests with local applications of existing
causal algorithms. Preliminary results on synthetic fNIRS data demonstrate re-
liable structural change detection with minimal time lag and low false positives.

Ongoing work will strengthen the algorithm with additional statistical tests
and noise reduction methods. Future efforts will focus on refining the nsDCBN
as changes occur, validating the model with synthetic and real fNIRS data to
recover brain connectivity. We also aim to explore real-time applications to im-
prove scalability and accuracy in dynamic systems.
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Abstract. We propose counterfactual reasoning through probabilistic
logic twin networks (PLTNs) to prevent collisions in self-driving cars.
The basis of a PLTNs is a causal Bayesian network (cBN ) partially
learned from simulated self-driving car data and synthetic data. The
cBN include the lane of the self-driving car, the presence of up to 4
surrounding vehicles, an indicator for potential collisions, and 6 driving
actions. Counterfactual queries through the PLTNs intervene with alter-
native actions to identify which minimizes the probability of a collision.
For evaluation, three cBNs are learned with 1%, 50%, and 100% of a trai-
ning dataset. For querying, 120 state-action examples labeled as leading
to a crash are selected randomly. Each one is associated with six possible
interventions. The probability of a collision is then queried from PLTNs,
provided that a potential collision has been warned, and the current state
and action are known. Results show that all intervened actions minimi-
zing the probability of a crash does not lead to a car crash, suggesting the
effectiveness of this approach in developing collision prevention schemes
for self-driving cars. To the best of our knowledge, this is the first appli-
cation of PLTNs for counterfactual reasoning in autonomous vehicles.

Keywords: Counterfactual reasoning · probabilistic logic twin networks
· Autonomous vehicles.
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1 Introduction

Collision prevention is an important concern in self-driving cars. Although
diverse approaches exist to achieve this goal, many rely on adjusting the current
trajectory or behavior of the self-driving car to a new, safer course of action
[19–21]. In this context, we propose probabilistic counterfactual queries to pose
questions about prospective, hypothetical situations like:

“What is the probability that a situation of potential collision could prevail,
given that the current action and the state of the system are known, if a

different action were chosen? ”

Answers to that kind of “What-if ” questions can help self-driving cars evaluate
the convenience of alternative driving actions to perform safer maneuvers under
hazardous situations [16]. Additionally, the probabilistic causal models associa-
ted with causal questions can be framed in probabilistic logic programming [15],
a paradigm well-suited for modeling causal relationships due to both its clear
and flexible rule-based representation, and the availability of sophisticated infe-
rence procedures to efficiently solve probabilistic queries on complex probability
distributions [6, 8].

Therefore, in this paper, we present our ongoing work on counterfactual rea-
soning using probabilistic logic twin networks (PLTNs) as a counterfactual model
to identify alternative actions that may prevent collisions in self-driving cars.
PLNTs are twin networks [2] encoded as probabilistic logic programs. Inference
is carried out through Counterfactuals [11], an efficient and effective tool re-
cently developed to solve probabilistic counterfactual queries in PLTNs. Causal
Bayesian networks (cBN ) are proposed as the basis of the PLTNs. Three cBNs
are constructed, for the most part, from a large dataset of examples taken from
multiple runs of simulations of our self-driving car under autonomous and human
control, and from synthetic data. The state variables included in the cBNs are
the lane in which the self-driving car is traveling and six “occupancy” variables
that indicate the presence of surrounding vehicles. On each state, the self-driving
car can choose one of six possible actions. When a potential collision is warned,
the goal is to calculate the probability of the collision given the current state
and action, by intervening in the causal model with alternative actions, one at a
time. It is assumed that the counterfactual action minimizing the probability of
the collision is the best alternative for the self-driving car to avoid or mitigate
the severity of the impact.
To evaluate our approach, three cBNs were constructed using 1%, 50%, and
100% of a training dataset containing over 1,900,000 examples of state-action
pairs. For testing, 120 examples were randomly selected from a pool of 288
state-action pairs labeled as potential crashes. Each of these examples was sub-
sequently associated with six alternative actions implemented in our simulated
self-driving car, forming a group of six examples that encompass the state, the
observed action, and possible interventions. Examples within each group are in-
dependently queried to a PLTN to compute its corresponding probability value
of a crash.
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A qualitative analysis of the results shows that, in all 120 cases the counterfac-
tual actions with the lowest probability of potential collision within each group
does not lead to a crash in any of the PLTNs. This finding suggests the via-
bility of the proposed approach for developing a collision avoidance module in
self-driving cars.

2 Related work

Recent research into autonomous vehicles (AVs) and their safety has made
significant strides using counterfactual reasoning, what-if analysis, and advanced
simulation techniques to address collision risks and enhance traffic safety. Stu-
dies have employed counterfactual simulations to evaluate the performance of
AVs in preventing collisions and improving safety. For example, research on the
Waymo Driver [17] demonstrated its effectiveness in avoiding fatal collisions
by simulating crash scenarios and showing that it could prevent or mitigate
a substantial percentage of crashes. Similarly, the impact of Advanced Driver
Assistance Systems (ADAS ) has been analyzed using counterfactual reasoning
to assess their safety benefits and drawbacks in real-world scenarios [3]. This
approach allows for a nuanced understanding of how different safety technologies
might alter crash outcomes and driver behavior. Another relevant study focused
on predicting crash configurations and the impact of Autonomous Emergency
Braking (AEB) systems [12]. This research utilized counterfactual simulations
to identify specific crash scenarios that AEB systems could not address, thus
highlighting areas for improvement. Additionally, counterfactual reasoning has
been applied to estimate the importance of objects in autonomous driving en-
vironments [10], enhancing the system’s ability to prioritize critical objects and
reduce collision risks. The effectiveness of pre-crash safety technologies, such as
AEB and Electronic Stability Control (ESC ), has also been evaluated in the
context of reducing severe injuries in crashes [14]. This study underscores the
role of these technologies in mitigating collisions and emphasizes the need for
continued advancements to address remaining safety concerns. Furthermore, re-
search on the design and evaluation of Automated Driving Systems (ADS ) has
utilized injury risk modeling to understand the potential outcomes of various
crash scenarios [13]. By developing comprehensive injury risk surfaces, this re-
search provides valuable insights into how different ADS designs could impact
overall safety. The importance of considering driver behavior models in coun-
terfactual simulations has been highlighted as well in [5]. Different models can
significantly influence the effectiveness estimates of safety systems, underscoring
the need for accurate simulations to evaluate safety technologies properly.

3 Methodology

3.1 Testbed and datasets

Our development framework involves a self-driving car simulated in race-like
environments using the Webots simulator. An example of the self-driving car and
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Fig. 1. Race-like environment considered in this study for our self-driving car (in bright
red).

its environment is shown in Fig. 1. The car can travel on a two-lane road with
straight segments and curves and up to 10 obstacle vehicles distributed over the
road and either static or in motion. However, in this work, we are considering
straight roads only. It is assumed that the vehicles traveling on the left lane
moves faster than those on the right lane, while the self-driving car is the fastest
(the maximum tested speed is near 50 km/h).

The architecture of the self-driving vehicle includes modules for perception,
driving control and decision making. Perception utilizes an accelerometer for
collision detection, 3D laser readings for detecting other vehicles, and a RGB
camera to detect lane borders. The control module is responsible for lane tra-
cking, and speed and steering estimation, following standard control laws. Deci-
sion making selects driving behaviors or actions based on a state-action policies
estimated by solving probabilistic logic factored Markov decision processes (PL-
MDPs) [1,4]. These policies primarily promote traveling on the right lane while
using the left lane only for overtaking. For decision making, the vehicle behind
the self-driving car in the same lane is not explicitly considered. State varia-
bles are curr_lane which identifies the current lane of the self-driving car, and
occupancy variables called free_E, free_NE, free_NW, free_SE, free_SW and
free_W which indicate whether there is a vehicle or not in the location indicated
in the name of each variable, relative to the self-driving car. Figure 2 depicts the
locations represented by the occupancy variables on each lane. In this work, we
incorporate a new variable called latent_collision used to warn a potential
collision in the trajectory of the self-driving car. All these variables are binary.
Finally, a multi-valued variable called action identifies one of four driving ma-
neuvers for the self-driving car: change_to_left and change_to_right used
for overtaking on the left and returning to the right lane, respectively, cruise to
reach a steady (maximum) speed, keep to maintain a safe, steady distance to
a vehicle ahead in the same lane, and swerve_right and swerve_left which
perform a controlled veer to the side of the lane while reducing speed. We con-
sider the two latter actions also as safe, evasive maneuvers in case of unexpected
situations.

We have recorded several runs of the self-driving car system under both
autonomous control and human command via a human-friendly interface deve-
loped on purpose8. These datasets include 1,238,869 driving decisions through

8 These datasets are available at: https://www.kaggle.com/autonomousvehicle/
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Fig. 2. Predefined locations for other vehicles around the self-driving car (dashed red
lines indicate the space the self-driving car occupy on each lane). When the vehicle is on
the left (resp. right) lane, only the locations Northwest, Northeast, East and Southeast
(resp. Northeast, Northwest, West and Southwest) are meaningful.

more that 300 km. The source code of our self-driving vehicle and some videos
of the self-driving system running are available at: https://github.com/hector-
aviles/AIRJ2024/.

The approach used in this work requires labeling each state-action pair in
the dataset as either leading to a collision or not. In the proposed driving envi-
ronment, we consider that a crash may occur principally in two situations: (a)
when the self-driving car applies the action cruise and there is a vehicle ahead
in the same lane (rear-end collision), or (b) when there is a car either next to
or ahead in the lane the self-driving car merges into (sideswipe and rear-end
crash, respectively). Following the previous criteria, from the complete space of
27×6 = 768 state-action pairs, we carefully labeled by hand 288 pairs as leading
to a potential collision. Some tate-action pairs that involve change_to_left,
change_to_right and cruise emerged as the “unsafe” driving combinations.
With this new list as reference, we found that the automated and human control
databases contain only a small number of potential crash examples (39,695 pairs,
all of which are repetitions of 132 unique pairs). Unfortunately, as of the time of
writing, sampling potential crashes by human control has not been completed
due to its tedious and time-consuming nature. Instead, the 288 state-action pairs
were replicated 2,500 times to generate a synthetic dataset of 720,000 potential
crashes. The number of repetitions was selected arbitrarily, with the aim of
approximating a balance between collision and non-collision examples. During
the process, continuous variables such as the speed and steering of the self-driving
car were random sampled from their known data distributions, although they
are not considered in the present work. This new dataset of crashes complements
the driving records originally obtained from the autonomous and human control
of the self-driving car. Each example in the integrated dataset was labeled using
latent_collision as a potential collision or not. Table 1 summarizes the num-
ber of actions labeled as potential collisions or non-potential collisions in the
complemented dataset. Table 2 shows the number of unique state-action pairs
on each subset.
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Table 1. Number of actions in state-action pairs labeled as potential collisions and
non-potential collisions in the integrated dataset.

Actions
# of examples of

non-potential collisions
# of examples of

potential collisions Total:

change_to_left 40,308 289,809 330,117
change_to_right 39,814 294,459 334,273

cruise 617,930 175,429 793,359
keep 496,558 0 496,558

swerve_left 2,883 0 2,883
swerve_right 1,681 0 1,681

Total: 1,199,174 759,695 1,958,869

Table 2. Number of unique state-action pairs labeled as non-potential collisions and
potential collisions (“safe” and “unsafe”, respectively).

Actions
# of unique “safe”
state-action pairs

# of unique “unsafe”
state-action pairs Total:

change_to_left 14 112 126
change_to_right 15 112 127

cruise 53 64 117
keep 67 0 67

swerve_left 36 0 36
swerve_right 29 0 29

Total: 214 288 502

3.2 Learning of the causal Bayesian networks

Structural and parameter learning of cBNs were instrumented with the bn-
learn package in R package [18]. Its directed acyclic graph is shown in Fig. 3.
Structural learning was carried out by means of hill-climbing greedy search with
Bayesian information criterion. Initially, we devised a preliminary graph that we
wished to test, so undesired links between variables were forbidden (for instance,
those between occupancy variables, or from action to curr_lane). In contrast,
only the relation that goes from action to latent_collision was explicitly
requested to be included, while letting hill-climbing to decide about the rest
of the connections. We believe the resulting structure resembles a causal graph
with confounders, with action being the treatment variable, latent_collision
being the output variable and the current lane and occupancy variables jointly
playing the role of a single, multi-valued confounder. The parameters of the cBN
were fitted by the maximum likelihood estimation criterion.

For training, we considered the integrated dataset containing 1,958,869 exam-
ples. Training data is organized into state-action-latent_collision triplets.
From our perspective, data leakage (that may occur when non-disjoint datasets
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Fig. 3. Causal Bayesian network (cBN ) proposed in this work.

Table 3. Number of unique state-action pairs as a function of the action used for
training and testing each cBN.

Training dataset

Action 1% 50% 100%
Test

dataset

change_to_left 122 126 126 49
change_to_right 118 126 127 46

cruise 101 114 117 25
keep 31 62 67 0

swerve_left 7 32 36 0
swerve_right 4 29 29 0

are used for training and testing) does not represent a major concern in this
setup. This is because the core of the evaluation focuses on comparing condi-
tional probabilities under interventions for a counterfactual model, rather than
studying the generalization capabilities of PLTNs to previously unknown data.
Despite this, we consider constructing cBNs using training sets of varying sizes
for comparison purposes. To achieve this, we randomly selected 1%, 50%, and
100% of the training dataset for structural and parameter learning of the cBNs.
Table 3 summarizes the number of unique state-action pairs used for training
and testing for each driving action and cBN.

3.3 Counterfactual queries

Counterfactual querying requires a cBN to be provided as a parameter to the
Counterfactuals library, formatted as a probabilistic logic program in ProbLog
syntax [9]. To achieve this, we developed a purpose-built R script to syntactically
translate the cBN learned with bnlearn into a ProbLog program. Although this
conversion results in a large format size in comparison to the well-known com-
pactness of traditional conditional probability tables, we have found that the
probabilistic logic representation of a cBN as a set of probabilistic facts and
rules was convenient during development for inspection, debugging and com-
munication. In the Counterfactuals library, two copies of the ProbLog program
are required to represent both the real and the counterfactual worlds. The two
ProbLog programs have the same rules as the original program and share pro-
babilistic facts representing not observable external factors. To obtain the twin
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networks, each rule of the original ProbLog program is duplicated, labeling the
variables on each copy with the superscript e for the real, and i for the counterfac-
tual world, respectively. As an example, consider the following Counterfactuals
representation of a twin network inspired in the model proposed in this work:

% Probabilistic facts
0.5349662:: u1.
0.7046031:: u2.
0.4785868:: u3.
0.1143778:: u4.

% Rules for the real world
free_NEe :- u1.
free_We :- u2.
action(keep)e :- free_NEe, free_We, u3.
latent_collisione :- action(keep)e, free_NEe, free_We, u4.

% Rules for the counterfactual world
free_NE i :- u1.
free_W i :- u2.
action(keep)i :- free_NE i, free_W i,u3.
latent_collision i :- action(keep)i, free_NE i, free_W i, u4.

A twin ProbLog program of this type constitutes a counterfactual model,
which is used to solve probabilistic counterfactual queries. A counterfactual
query is evaluated by first absorbing the evidence in the real ProbLog rules,
then performing the intervention in the counterfactual ProbLog rules, and fi-
nally, using the internal inference engine of Counterfactuals [7] to assess the
conditional probability of a hypothetical event given the observed values of cer-
tain variables as evidence. This scheme allows us to perform queries about the
probability value of any variable of the cBN being true, given the evidence availa-
ble, along with interventions on the truth values of one or more variables. In our
case, the query is focused on the variable latent_collision. The evidence in-
cludes the current lane, the occupancy variables and the action it is performed.
The counterfactual variable is action. Thus, we are interested in calculating
probability values of the type9:

P
(
latent_collisioni = T

∣∣latent_collisione = T, curr_lanee = right,
free_Ee = T, free_NEe = F, free_NWe = F, free_SEe = T,

free_SWe = T, free_We = F, actione = cruise,

do(actioni = keep)
)

(1)

9 The truth value T means the truth-value true, and F means false (in the case of the
occupancy variables, T indicates that a location is empty and F that it is occupied
by another vehicle).
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Table 4. Number of groups with a unique minimum probability value and the number
of ties for first place (ranging from 2 to 5) across all groups and counterfactual models.

# of ties
(1st place) # of cases (1%) # of cases (50%) # of cases (100%) Total:

No ties 43 23 20 86
2 32 32 33 97
3 28 38 42 108
4 15 26 24 65
5 2 1 1 4

Total: 120 120 120 360

4 Evaluation and results

The evaluation of a counterfactual model involves a random selection of 120
unique state-action-latent_collision triplets from the list of identified po-
tential collisions (that is, in which latent_collision = T). These triplets are
further expanded by adding an intervention over the observed action with each
of the six actions that the self-driving car can perform (including the action
originally observed). Each unique triplet is thus transformed into a group of six
state-action-latent_collision-intervention quartets, all sharing the same
observed state-action-latent_collision triplet, but incorporating a different
intervention on the action. From each quartet, a query similar to that in Equation
1 is derived to be solved by the counterfactual models. In total, each counter-
factual model solves 720 queries. The objective is to identify an action (among
the six intervention alternatives) that minimizes the probability of latent_-
collision. It is assumed that the counterfactual actions with the lowest proba-
bility of latent_collision represents the best decision at hand to prevent or
reduce the severity of an accident under the observed circumstances.

Table 4 presents the number of ties for the first place observed across the
120 groups for the three counterfactual models when ranking the quartets within
each group from lowest to highest, according to their probability values. We con-
sider there can be from 2 to 5 ties on each group (the action currently observed
has a probability value of 1 and there is at least one safe action on each state).
For tie-breaking (that is, selecting an appropriate intervention among those sha-
ring the lowest probability value), we implemented a straightforward, standard
approach based on random selection. In accordance with our initial labeling of
state-action pairs as potential or non-potential collisions, results show that in
all three counterfactual models and test examples, the intervened action associa-
ted to the lowest probability value for latent_collision may indeed prevent a
crash. Table 5 resume the number of actions selected as the best alternative for
each counterfactual model, following the previous scheme. The average time for
solving each counterfactual query on the three models is 5.74 seconds (SD=0.15).
All tests were performed on a standard Core i7 laptop computer.

74 Applications



Rodriguez et al.

Table 5. Number of actions selected as the optimal intervention in the three counter-
factual models.

Action

# of best
interventions

(1%)

# of best
interventions

(50%)

# of best
interventions

(100%) Total:

change_to_left 1 1 0 2
change_to_right 0 4 2 6

cruise 23 25 22 70
keep 59 51 47 157

swerve_left 22 24 30 76
swerve_right 15 15 19 49

Total: 120 120 120 360

Table 6. State-action pairs with 5 tied actions. The first two pairs, from top to bottom,
correspond to the counterfactual model trained with 1% of the data, and the last one
is the same for the models trained with 50% and 100% of the data (all actions other
than the observed are safe).

State variables

curr_lane free_E free_NE free_NW free_SE free_SW free_W
Observed

action

right F T T F T T CTR
right F T T F F T CTR
left T T T F F T CTL

4.1 Discussion

The initial results described above are encouraging. A qualitative analysis re-
vealed that 100% of the best driving decisions obtained through counterfactual
reasoning prevent car collisions. When ties occur between alternative interven-
tions, choosing an appropriate action for the current driving scenario becomes
particularly important. In our case, this is especially relevant due to the signifi-
cant number of ties identified on closer inspection of the results. A thorough ana-
lysis of the ranking of state-action-latent_collision-intervention quartet
with respect to their probability values within each group demonstrated that, in
all groups, all interventions with the lowest probability value are also safe actions
(note that there may be more than one safe action for some states). For example,
Table 6 show the 3 unique cases in which there are 5 equivalent interventions.
Yet factors beyond safety that include efficiency on energy consumption, bet-
ter use of available space, better adherence to traffic rules, cooperation with
other vehicles and human preferences can also be taken into account to improve
tie-breaking.
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5 Conclusions and future work

We have presented a counterfactual reasoning approach to prevent collisions
in a self-driving car using probabilistic logic twin networks. Twin networks are
derived from causal Bayesian networks designed through expert knowledge, data
from simulations and synthetic data. Three causal Bayesian networks were cons-
tructed and tested using training sets of varying sizes. Counterfactual reasoning
allowed us to decrease the probability of a car crash by intervening with alter-
native maneuvers, yielding promising results. Although we have not yet fully
exploited the descriptive and inferential capabilities of the Counterfactuals li-
brary, we recognize its suitability for development, debugging and analysis. This
probabilistic logic approach does not only enhance clarity of the causal model,
but it help us consider its deductive capabilities in explainability tasks in which
it is useful to track the inference path.

As a future work, we plan to perform an exhaustive testing with more colli-
sion cases, make more extensive use of the pobabilistic logic approach to include
new information for tie-breaking, and integrate counterfactuals into the decision-
making module of our self-driving vehicle. Additionally, we will incorporate new
information to the causal model, such as discrete versions of the distance from the
self-driving car to other vehicles, as well as speed and steering of all the vehicles
on the road. Furthermore, we will explore Counterfactuals to achieve counter-
factual explanations about relevant variables and rules in decision-making, with
the primary aim of enhancing transparency and trustworthiness in autonomous
vehicle systems.
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Abstract. Deep reinforcement learning can be used for visual naviga-
tion in mobile robots but needs substantial computational resources and
long training time. To reduce exploration time and improve adaptation
to novel situations or environments, we created an algorithm to learn a
Causal Bayesian Network of the task and use it in a Deep Reinforcement
Learning algorithm (DQN). Experimentally, we show its effectiveness in
simulated environments for a visual robot navigation task.

Keywords: Causal Reinforcement Learning · Deep Reinforcement Learn-
ing · Micro Air Vehicles.

1 Introduction

The use of Unmanned Aerial Vehicles (UAV) or drones, has recently increased,
in recent years, due to the growth interest in using them for entertainment, but
also for military, agriculture ([22]), delivery services ([9]), and rescue applications
([18]), among others. Their principal disadvantage is the need for a human pilot
to control it, so multiple research works have used different artificial intelligence
techniques to develop autonomous pilots ([12][8] [11]). One of the most popular
techniques is Reinforcement Learning (RL) which has been used for collision
avoidance and seeking an objective/goal in different environments ([4] [25] [14]).
RL algorithms require a large amount of data and long times for training. A
promising alternative is to use causal discovery to construct a causal model of
the environment which can help accelerate the training phase.

Causal reinforcement learning integrates causal inference into RL, with the
aim of utilizing the underlying causal relationships in the environment. Incorpo-
rating knowledge from a causal model and their construction into RL algorithms,
e.g., [7] [28] [19], can greatly speed up the learning process by reducing the need
for extensive exploration, but their use in robotics task has not been yet proved.
In this research, we show how it can be used to autonomously control navigation
tasks in a drone in a simulated environment and build two algorithms: one that
learns a Causal Bayesian Network (CBN) of the task and environment during
training of the DQN algorithm; and another one (with two variants) that uses a
CBN to guide the selection of actions in the DQN algorithm.
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2 Fundamentals

Reinforcement learning studies sequential decision problems. Mathematically, we
can formalize these problems as Markov Decision Processes (MDPs). An MDP
can be formally described by a 4-truple (S,A,P,R) where:

– S is a state space in which the process of evolution takes place.
– A is a set of all possible actions that control the state dynamics.
– Pa(s, s

′) = Pr(St+1 = s′|St = s,At = a) denotes the probability of transi-
tion (at time t) from state s to state s′ under action a.

– Ra(s, s
′) provides the immediate reward after transition from state s to s′

with action a.

MDPs allow us to model the state evolution dynamics of a stochastic system
when this system is controlled by an agent choosing and applying the actions
at at every time step t. The procedure of choosing such actions is called action
policy or strategy and is written as π. A policy specifies which action to take
at a particular state. Solving a Markov decision problem implies searching for a
policy that optimizes a performance (or optimality) criterion. One way to solve
MDPs, particularly when the state and action spaces are too large for tabular
methods, is the use of Deep Reinforcement Learning (DRL).

DRL combines the perception capabilities of deep learning with the decision-
making capabilities of reinforcement learning by using deep neural networks, this
can handle more complex scenarios with less engineered feature extraction. One
of the most commonly used DRL algorithms is Deep Q-Learning (DQL), which
updates the Q-values using the Bellman equation:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]

Where:

– Q(s, a) is the state-action value function, representing the expected utility
of taking action a in state s.

– α the learning rate (0 < α ≤ 1) determines to what extent newly acquired
information overrides old information.

– r is the reward received after taking action a.
– maxa′ Q(s′, a′) is the maximum predicted reward obtainable from the next

state s′, over all possible actions a′.
– γ is the discount factor (0 ≤ γ < 1). It represents the difference in importance

between future rewards and immediate rewards.

Traditional Q-Learning stores Q-values in a Q-table, but this is infeasible
for large, continuous state spaces. DQL solves this by using a neural network
to approximate Q-values, inputting states and outputting actions but it needs
extensive interactions to gather enough data for training. This data can be used
for action selection or causal discovery.
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2.1 Causal Discovery

Causal Modeling attempts to solve questions about possible causes by provid-
ing explanations of phenomena (effects) as the result of previous phenomena
(causes). Several writers [17][15] specify three conditions that must be met in
order to infer the existence of a causal relationship between two variables, X and
Y : (1) a covariation between X and Y, (2) a time-ordered asymmetry, and (3) the
elimination of other possible causes. Graphs are used to represent dependencies,
where connected variables are dependent, and independent relations are implicit.
Causal Bayesian Networks (CBNs) offer a framework for causal inference and
prediction and represent stronger assumptions than Bayesian networks; CBNs
assume all relationships correspond to actual causal connections [26].

The combination of RL and causal modeling is a relatively new field called
Causal Reinforcement Learning (CRL). CRL is a suite of algorithms incorpo-
rating additional assumptions or prior causal knowledge into RL to analyze and
understand the causal mechanisms underlying actions and their consequences.
This enables agents to make more informed and effective decisions for more effec-
tive model learning, policy evaluation, or policy optimization [5]. It is generally
divided into two categories, the first category is based on the prior causal in-
formation, where such methods typically assume the causal structure about the
environment is given a priori by experts; while in the second category the causal
information has to be learned [27]. Our work belongs to the second category, we
developed an algorithm to learn the causal information from the interactions of
the RL agent with the environment to later use it in policy construction.

3 Related Work

3.1 Deep reinforcement learning

DRL has been widely used to develop autonomous drone pilots to avoid obstacles
and achieve their goals. Darwish et al. [4] introduced a model-free DRL method
using a depth-RGB camera, outperforming DQN in intercepting specified tar-
gets. Shin et al. [25] demonstrated a drone navigating 3D obstacles with a dual
input of an RGB camera and depth map for precise path finding. Cetin et al.
[2] proposed DRL for autonomous navigation in suburban environments using
depth images. Kersand et al. [14] used depth images and heading to train DQL
algorithms. A challenge in training DRL agents is the time and data required.
Causal models can be used for interpretability, task transfer, and faster training.

3.2 Causal Modeling

Causal Modeling (CM) needs rigorous data collection and expert knowledge. In
machine learning, it has been used mainly to generate explanations. Shi et al.
[24] introduce a model for interpreting causal relationships in a temporal-spatial
context, capturing the causal connections between consecutive observations and
decisions made by an RL agent. In [13], the authors use structural causal models
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to make human insight explicit in the causal relations used during the develop-
ment of AI systems. Cetin et al. [3] use causal information to explain why the
agent performs an specific action. It is based on the generation of a saliency map
to identify the critical regions in an input image that influences the predictions
made by the DQN agent. Diehl et al. [6] learn a CBN from simulation data to
learn a cause-effect model of the environment, generating causal explanations.

3.3 Causal Reinforcement Learning

As we mentioned before, CRL is divided into two categories. The first category
is based on prior causal information. Feliciano et al. [7] demonstrate better per-
formance even with partial and spurious relationships by integrating a CM into
Q-Learning in the light switch control tasks. Zhu et al. [28] use DQL in the Emo-
tional Pendulum and Windy Pendulum tasks. Gonzalez et al.[10] introduced a
decision-making approach for agents operating in environments characterized by
uncertainty and underlying causal dynamics. This approach enabled the agent
to continually update beliefs about the causal environment based on interactive
outcomes. In their experimental setup, it was presupposed that the agent had
prior knowledge of the causal framework governing the environment.

In the second category, the causal information has to be learned. Méndez et
al. [19] learn a Causal Dynamic Bayesian Network for each of the agent actions
and uses those models to improve the action selection process in the Coffee task.
The same authors [20] developed a framework for simultaneously learning and
using causal models to speed up policy learning in online MDPs, evaluated in
the Coffee, Taxi and Taxi Atari tasks. MOCODA [21] applies a learned factored
dynamics model to an augmented distribution of states and actions to generate
counterfactual transitions for RL, and is used to train an offline RL agent to
solve a robotics manipulation task.

It is clear that causal knowledge can help to accelerate reinforcement learn-
ing; however, there are very few approaches that learn causal models from data
generated in RL and it has not been used for autonomus drones navigation.

4 Methodology

Data recollected by the agent during RL is used to learn a Causal Bayesian
Network, which in turn is used in the action selection process of RL. We select
Deep Q-Learning (DQN) as the algorithm to implement the visual navigation
task in the drone. DQN uses two strategies to facilitate a more stable learning
process: (i) An experience replay buffer, which stores the experiences of the agent
and from which random samples are selected for the gradient descent process,
(ii) the use of two networks to reduce the variance of the gradients, one fixed and
used as a reference, and other one which is updated. The algorithm is described in
Algorithm 1, the modifications on DQN are lines 5-7, where the Causal Bayesian
Network is learned, and lines 8 and 14, where the Causal Bayesian Network is
used.
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Algorithm 1 Deep Q-Learning Algorithm
1: Initialize replay memory D to capacity N , action-value function Q with random

weights θ and target action-value function Q̂ with weights θ− = θ
2: for episode = 1,M do
3: Initialize sequence s1 = {x1} and preprocessed sequence ϕ1 = ϕ(s1)
4: for t = 1, T do
5: if step % k == 0 then
6: Learn the Causal Bayesian Network
7: end if
8: Set the probability of each action to reach a negative and positive reward

with the evidence of the state t
9: rand = random number

10: if rand < explorationRate then
11: action at = random action
12: else
13: action at = MaxIndex(qValues)
14: Use of the Causal Bayesian Network (Algorithm 3)
15: end if
16: end for
17: end for

4.1 Learning of the Causal Bayesian Network

The structure of the CBN is learned while training the agent in DRL using the
Hill Climb search algorithm and the BIC score. Once we have the structure of
the directed graph, we need to learn the parameters. For this, we calculate the
Markov blanket of the reward node and delete synchronous links in the graph. To
perform the inference with the observable state, we use the variable elimination
algorithm [16]. The learning of the CBN is described in Algorithm 2, where k
is a predefined number of steps to update the Causal Bayesian Network, and
numActions is the number of actions in the actions set.

4.2 Use of the CBN in DQN

If the CBN model is already known, it can be used from the onset of the learning
process. However, when the CBN needs to be learned, the RL algorithm must
first accumulate sufficient data, this is necessary to ensure that the data collected
is adequate for learning an accurate approximation of the true CBN. Algorithm
3 describes how to use the CBN within DQN. At each step, it takes the state
elements present in the Markov blanket of the reward node as filtered evidence,
which is used in the inference of reaching each state value. We divide this in-
ference into two arrays, for the probability of transition to a positive reward
(ProbAct) and for the probability to transition to a negative reward (ProbAct-
Neg). Lines 10-13 describes the normal behavior of DQN, after that, depending
of the probability of consulting the CNB ProbCausalModel (lines 14-26), the
algorithm decides which action to take. If the action selected has a high prob-
ability (ThresholdProb) to reach a negative reward, the action is eliminated as
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Algorithm 2 Learning the Causal Bayesian Network
1: At each step in the QDN algorithm save the state representation at time t, t + 1,

reward, and accumulated reward in the variable data
2: if step % k == 0 then
3: for i = 0 to numActions do
4: Check for the previous model
5: if there is a previous model then
6: Start with a pre-defined structure for the CBN
7: else
8: Start with a random initial structure for the CBN
9: end if

10: model[i]= HillClimbSearch(BIC score, data)
11: Delete synchronous links, calculate the Markov blanket for the node Reward

and create/update CPTs
12: inference[i] = VariableElimination(model[i])
13: end for
14: end if

an option and another one is randomly selected (lines 16-20). If the selected
action has a high probability to obtain a positive reward, the action is executed
(lines 22-24). We define a variant of the previously described method where the
decision to consult the CBN is performed before the behavior of the standard
DQN.

5 Experimental results

For the implementation of DQN for visual navigation in the drone, we followed
the implementation of Anas et al. [1] and adapted it to our task.

State space: The agent’s state spaces consist of: (i) An image with dimen-
sions 84x84x3 pixels used to evaluate the performance of the baseline algorithm
without causal models. (ii) An image with dimensions 84x84x3 pixels + 9 values
for the learning and use of the CBN.

Action space: the agent can take eight discrete actions namely: forward and
backward moves (move the drone in the y axis), turn left and turn right (change
the orientation of the drone in the x axis), right and left (move the drone in the
x axis), and ascend and descend (move the drone in the z axis).

Target: a goal image.
Reward: calculated from the following formula.

reward =





100−Dist. to goal− |angle to goal| if the target is recognized
1000 if the goal is reached
−1000 if the drone crashes
−9 otherwise

Termination conditions: 1) The agent reaches the goal within 0.2 meters.
2) The agent collides with an obstacle. 3) The number of steps exceeds 200.
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Algorithm 3 Use of the Causal Bayesian Network for DQN
1: At each step initialize Evidence of the state t
2: for i = 0 to numActions do
3: filter evidence of the Markov blanket of the node reward
4: result = inference[i] for variable reward with filtered evidence
5: ProbActNeg[i]=Probability of the action to obtain a negative reward
6: ProbAct[i]=Probability of the action to obtain a positive reward
7: end for
8: initialize ProbCausalModel and ThresholdProb
9: rand = random number

10: if rand < explorationRate then
11: action at = random action
12: else
13: action at = MaxIndex(qValues)
14: rand = random number
15: if rand < ProbCausalModel then
16: if ProbActNeg[action at] > ThresholdProb then
17: ActionNegative = action
18: while action at == ActionNegative do
19: action at = random action
20: end while
21: else
22: if ProbAct[action at] < ThresholdProb then
23: action at = MaxIndex(ProbAct)
24: end if
25: end if
26: end if
27: end if

Network Architecture: The Prediction and Target Networks share the
same structure.

– Input Layer: 84x84x3 RGB image.
– Convolutional Layers (ReLU activated):
• Layer 1: 32 filters, 8x8 kernel, stride 4.
• Layer 2: 64 filters, 4x4 kernel, stride 2.
• Layer 3: 64 filters, 3x3 kernel, stride 1.

– Flatten Layer: Converts output to 1D.
– Dense Layer: 512 units for processing features.
– Output Layer: 8 nodes for Q-values of actions.
– Loss Function: Mean Squared Error (MSE).
– Optimizer: RMSprop, learning rate 0.00025, discount 0.9, epsilon 0.00000001.

To represent the information needed for the construction of the CBN we used
9 values: (i) Distance of five defined sections of the image (center, top left, top
right, bottom left, and bottom right). In each section we select a number specific
of random points (at least 20 points), taking the smallest distance as the overall
distance of the drone to the objects in this section. (ii) A boolean value if the
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goal is in the field of view. (iii) Distance and angle to the goal, and (iv) Altitude
of the drone. To obtain these values we need three sensors: an RGB camera to
process the image to detect the goal, a Depth Camera to obtain the distances,
and a barometer or similar to obtain the altitude of the drone.

The goal is a sign of "Heliport". Usually, the goal is defined with a set of
coordinates, but we try not to depend on the agent seeing the goal all the time,
and, in real cases, access to the real coordinates requires the help of GPS or
other sensors that are more difficult to access. To enable the drone to recognize
the goal, we trained a custom YOLO v8 model [23] for 50 epochs and obtained
a precision of 0.943 and a recall of 0.902 for goal detection, using a dataset of
1070 images from simulations and real-world data. The YOLO model returns
a list of detected objects, each with a bounding box coordinates and a score,
representing the confidence in the detected object. We set a threshold of 0.7
for the confidence score. Once the model detects the object and the bounding
box coordinates are obtained, the distance is calculated in the same way as the
sections. We also establish an angle between the center of the image and the
center of the goal.

For experimental purposes we construct a CBN of the task to use in the
reinforcement learning algorithm, taking into account the 9 values obtained from
the RGB and depth image. To simplify and reduce the observation space we
discretized all the values, taking two values for the distance: close and far; a
boolean value for the goal in sight; three values for the angle: center, far left and
far right, and three values for the altitude: good, close and far ground.

5.1 Results

We begin our experiments by using the state representation for learning and
using the CBN to determine the optimal value for k. The parameter k dictates
the point at which the CBN learning algorithm starts its learning process. We
evaluated its effectiveness across various k values: 100, 200, 400, and 600. Their
performance is illustrated in Figure 1, the vertical axis represents the reward
obtained in each episode after applying a moving average of size 20 to smooth
out short-term fluctuations and highlight longer-term trends, rewards range from
below -1000 up to approximately 1500. The horizontal axis tracks the number of
episodes, ranging from 0 to 700. Before the first k steps the algorithm behaves
as DQN, after k steps the algorithm can consult the current CBN model.

Lower k values seem to have more stability compared to higher k values,
which exhibits more dramatic ups and downs. This indicates that lower k values
provide a more consistent learning experience or adaptation, whereas higher k
values, while capable of achieving higher peaks, may introduce volatility. For this
reason, we select the value of 200 for k to compare with the other algorithms.

To evaluate the performance of our algorithm, we compared the DQN al-
gorithm as baseline (only image) with the proposed algorithm that adds the
discrete state representation, using: (i) the defined Causal Bayesian Network (ii)
learning the CBN (CBN-DQN P) (iii) a variant of the algorithm considering the
probability of receiving a positive and negative reward from the CBN to decide
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,

Fig. 1. Episode reward obtained after 700 episodes in the learning and use of the CBN
in the DQN algorithm with k equals to 100, 200, 400, and 600. The vertical lines
indicate from which episode the CBN is learned and subsequently used and updated.
We utilize a moving average of size 20.

which actions to take versus considering only the probability of positive rewards
for the first version (CBN-DQN PN) and (iv) learning the CBN in the second
version of the algorithm (CBN-DQN V2), all with k=200

,

Fig. 2. Episode reward obtained after 700 episodes with base DQN, DQN with the
CBN defined, CBN-DQN PN, CBN-DQN P and CBN-DQN V2 with k=200, with a
moving average of 50.

Their performance is illustrated in Figure 2, the vertical axis represents the
reward obtained in each episode after applying a moving average of size 50.
The best behavior is when the Causal Bayes Network is manually defined in
advance because it is used from the beginning of the learning process and the
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CBN is more accurate. Using only the image as state representation has not
adequate information to reach the goal and the network learns to "do nothing".
In comparison, the CBN-DQN V2 is the closest to the behavior of the algorithm
with a predefined causal model, compared to use only the action with a higher
probability of carrying a positive reward (CBN-DQN P) and using both (CBN-
DQN PN). This could be because the first version of the algorithm benefits
more from performing random actions at the first episodes depending of the
exploration rate, so it might require more training episodes for better behavior
compared to the version two of the algorithm where the probability of consulting
the CBN is dominated by the exploration rate.

We also analyze the behavior of the CBN learning method. We can observe
the evolution of the CBN for CBN-DQN V2, for the action forward in Figure 3.
It begins with 4 connections between time t and time t + 1 but at the end, it
has 7 connections. It is interesting to note the dependence between the reward
and the angle for the same t+ 1, which depends of seeing the goal and its angle
goal in the previous time. This behavior of the learned CBNs helps us to note
dependencies that we did not take into account in the manual definition of the
network. Also, the lack of direct connections to the reward node can indicate that
there was not sufficient information involving seeing the goal and consequently
the angle and distance to the goal.

From the experiments we can conclude the following:

– A Causal Bayesian Network (given or learned) can be used to improve the
performance of an RL agent in robotic tasks with a partially continuous
space state.

– A Causal Bayesian Network can be learned from data obtained during the
reinforcement learning process but more episodes are needed to obtain a
good model.

6 Conclusions

In this work, we developed two algorithms: one that learns a Causal Bayesian
Network of the task and environment during the training of the DQN algorithm

Fig. 3. Comparison of the first and last Causal Bayesian Network for action forward.
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and another one (with two variants) that uses a CBN to guide the selection
of the actions in the DQN algorithm. We tested the algorithms in the task of
autonomous navigation of a drone in a simulated environment. The results show
that the use of causal knowledge can accelerate learning a policy; and that it is
possible to learn partial CBNs, while learning a policy, but more episodes are
required to reach a stable and accurate CBN.

As future work, we need to train our algorithms for more episodes to prove the
stability of the algorithm and confirm if the learned CBN reaches the accuracy
of the model with the network previously defined. We also need to perform more
tests on different environments to assess the generality of the proposed approach.
We would also like to include an exploration strategy, in case the objective is
out of sight. Finally, we believe that the learned CBNs can be transferred to
other, although similar, domains where the causal relationships are still valid.
Acknowledgments The authors would like to acknowledge the funding support
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Abstract. As causal discovery algorithms have not matured up to the
point where they can consistently identify complete causal structures
from observational data, human expertise remains crucial in distinguish-
ing cause from effect. In scientific practice, this human expertise is man-
ifested in literature studies. This paper presents a causal discovery ap-
plication of the environmental-conflict, conflict dynamic in Iraq where
an extensive literature review is paired up with a causal discovery algo-
rithm to uncover a causal mechanism. Specifically, the literature review
identifies relevant variables for the causal dynamic and offers a hypoth-
esized causal structure, which is then used as a benchmark to evaluate
the causal structures derived from the causal discovery algorithms. Our
proof of concept shows that such an approach can add specificity and
refine our understanding of a causal mechanism.

Keywords: Causal Discovery · Human Expertise · Conflict Studies

1 Introduction

Environmental-conflict is a form of tension or violence triggered by competition
over natural resources or environmental pressures, such as scarcity or degra-
dation. Although environmental-conflict literature has advanced in examining
the causal relationships between climatological factors and the onset of armed
conflict, these studies often focus on specific connections rather than a compre-
hensive mechanism of naturally induced conflict [11, 24, 15]. The unsuitability of
randomized controlled trials for the study of armed conflict further hampers the
extraction of causal relations, leaving a gap in the literature for methodologies
that can infer causality from non-experimental observations.

One way to address this gap is causal discovery. While causal discovery al-
gorithms have gained traction over the years, research has shown that causal
discovery algorithms can be unstable [14] or that only limited parts of the causal
graph can be discovered from pure observations [19]. To this purpose, domain
knowledge can be used to refine the performance of causal discovery algorithms
and has been incorporated via tiered background knowledge [2] user interactions
[16] or the penalization of the search process [9].
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This extended abstract extracts a causal mechanism from environmental-
conflict data in Iraq by complementing the power of a causal discovery method
with hypothesized causal linkages from a literature review. First, a hypothe-
sized causal mechanism is derived from a literature review, which informs the
selection of variables for causal discovery. A causal discovery algorithm is then
applied to the environmental-conflict data, and the resulting causal structure is
benchmarked against the established linkages from the literature.

While the hypothesized causal linkages from the literature are discussed in
Section 2, the data, causal discovery algorithm, and results are described in
Section 3. Finally, the conclusions and limitations are discussed in Section 4.

2 Literature Review

This section formulates hypotheses on causal linkages contributing to the emer-
gence of environmental conflict in Iraq, grounded in a comprehensive literature
review that systematically examines regional environmental stressors and con-
flict dynamics identified across academic sources.

Fig. 1. The hypothesized causal structure: it distinguishes between direct and indirect
linkages (i.e., paths A and B, respectively).
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Long-term weather patterns have been directly linked to armed conflict [12,
11, 25, 8, 4]. Environmental changes can disrupt livelihoods, prompting fragmented
communities to take action in an effort to mitigate the adverse effects. Such
changes include variations in precipitation, evaporation, temperature, and the
differential absorption or release of accumulated heat by physical environments,
all of which may contribute to the emergence of conflict [11, 24].

On the other hand environmental variables have also been argued to cause
armed conflict indirectly [3, 24, 15]. One possibility is that the effect of environ-
mental changes on armed conflict are mediated by the scarcity of vital resources
[24, 10]. This materializes into the scarcity of crops due to disrupted weather
patterns, of which rice production has been shown to mediate causal effects of
temperature on the emergence of actual violence [5].

Many studies also tie the emergence or existence of armed conflict in relation
to environmental changes to population sizes [27, 20, 22]. Specifically, resource
scarcity affects denser populations more significantly than less dense ones [3, 1],
as denser populations might be less able to mitigate tensions effectively.

With all of the above hypotheses, it is possible to compose the entire hypo-
thetical causal structure of linkages between environment and conflict, as shown
in Figure 1. This hypothesized causal structure is also in line with research of
other scholars [24].

3 Experimentation and Results

The units of analysis are all the 294 Iraqi municipalities. The literature study was
leading in the choice of extracted variables. First, the number of civilian fatalities,
conflict events, and conflict fatalities were sourced from Armed Conflict Loca-
tion and Event Data Program [21] (ACLED). In addition, the climatological-
related variables such as precipitation, soil temperature, and latent energy were
retrieved from IMERG quality index [13], ERA5-Land dataset [18] and NASA
MODIS dataset [23] respectively. Finally, we extracted rice production data from
MapSPAM [26] and population density data from the International Earth Sci-
ence Information Network at Columbia University [7]). Since the time horizon
was from January 1, 2020, to January 1, 2022. we aggregated the values of ex-
planatory variables, so much so each aggregation emphasized extreme values of
the observed explanatory variables.

The causal discovery algorithm that is being applied to the data is GES [6].
Although the study would benefit from a more exhaustive use of causal discovery
algorithms, GES has been chosen as it has been deemed suitable in the case of
simulation studies with small sample sizes [17].

As the literature review pointed out, there are multiple subselections of vari-
ables that are hypothesized to play a role in the environmental-conflict dynamic.
While no causal linkages or partial causal structure is imposed in the causal
discovery phase, a total of 136 extracted graphs are benchmarked against the
hypothesized graph of Figure 1. The graph that shares the most directed edges
with the hypothesized graph is shown in Figure 2.

92 Applications



4 M. Vonk

Fig. 2. GES-retrieved causal structure that is most aligned with the literature review

The literature review only hypothesized the possible existence of direct or
indirect effects, which is why the causal discovery process reveals more specifi-
cally which directed arrows exist between the variables. The empirically retrieved
causal structure reveals that precipitation is the only environmental variable with
a direct effect on conflict, while other effects are mediated by rice production or
population density.

4 Conclusion and Limitations

In this work, we have provided a proof of concept of how the strengths of both
thorough literature review as well as causal discovery methods can be merged
to achieve a causal mechanism in the environmental-conflict context of Iraq.

Since the results of causal discovery are filtered based on their alignment
with existing findings, the method can only corroborate established conclusions
and is unable to identify causal structures that are not already supported by the
literature. Nonetheless, as the literature consensus can be ambiguous, pairing
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them up with causal discovery algorithms can contribute significantly to refining
our understanding of complex causal structures.

Finally, a limitation of our current approach to environmental-conflict mod-
eling is that the causal discovery process assumes that the data is independent
and identically distributed (i.i.d.). However, it is plausible that climatological
variables of one municipality may influence the climate-conflict dynamics of an-
other municipality, leading to violations of the i.d.d. assumption. This spatial
confounding calls for causal discovery methods that can account for such viola-
tions [28].
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Abstract. Higher education is a critical driver of social mobility and
economic development globally. Access to universities and the factors
influencing academic performance are essential for shaping the future
workforce and ensuring equitable opportunities. In Chile, the higher edu-
cation system plays a pivotal role in providing pathways for students from
diverse socioeconomic backgrounds. This study focuses on the discovery
of causal relationships influencing student admission to higher education
in Chile, using data from the Higher Education Access Test of 2021. The
research aims to identify the factors affecting academic performance and
access to university by applying causal inference algorithms, specifically
PC, GES, and LINGAM. These algorithms help uncover directed acyclic
graphs (DAGs) from observational data, revealing the underlying causal
structure among variables like socioeconomic background and academic
scores. The results highlight the potential causal relationships between
these factors, providing critical insights for educational policy-making.
Key findings demonstrate the value of such causal models in understand-
ing the dynamics that affect educational outcomes. Future work should
explore the application of additional sensitivity analyses and broader
datasets to further validate and refine these causal models.

Keywords: Higher education · Causal learning · Causal structure.

1 Introduction

Higher education is a cornerstone of societal progress, fostering innovation, crit-
ical thinking, and economic development. Around the world, universities serve
as hubs for research, knowledge creation, and the cultivation of skills necessary
for addressing complex global challenges. Access to higher education is linked
to improved employment prospects, social mobility, and the reduction of income
inequality. In Chile, higher education is similarly vital, providing pathways for
individuals to advance professionally and economically. The country’s education
system has undergone significant reforms to promote equity and broaden access,
yet disparities remain, particularly for students from lower socioeconomic back-
grounds. Addressing these inequalities is crucial for ensuring that all Chilean
students have the opportunity to succeed in a rapidly evolving global economy.
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Within the context of the Higher Education Access Test (PAES), which is
the instrument that allows access to higher education, that is, the universities
attached to the access system, it is highly desirable to understand the key factors
that can explain access to higher education. The Higher Education Access Test
(PAES) of Chile, which replaced the old University Selection Test (PSU), in its
most recent versions offers academic and socioeconomic data that can potentially
be used to analyze the influence of multiple factors on academic performance
and access to higher education. In the context of computer sciences, establishing
the identification that is materialized in causal relationships is a fundamental
challenge in artificial intelligence, especially if the focus is on the educational
area, where decisions based on correct analysis can have a significant impact on
policies and on the development of students as well as on their academic and
professional performance.

The main objective of this study is to identify the key causal relationships
between various educational variables specified in the PAES 2021 dataset. This
will contribute to a better understanding of the factors influencing university
admissions and, subsequently, academic performance. The available dataset in-
cludes a range of variables, such as scores across different areas of knowledge,
socioeconomic background, and demographic characteristics of the students. The
findings are expected to offer new insights into the interactions between these ed-
ucational variables and provide a solid foundation for making informed decisions
in educational policy or guidelines that support continuous improvement.

The literature on causal inference in educational data has had a sustained
growth in recent years, which is why there are studies that have used machine
learning and statistics methods to identify patterns and relationships in academic
performance data. However, the specific application of causal structure discovery
algorithms in the context of education is relatively new. These methods allow not
only identifying correlations, but also establishing causal directions, which makes
them particularly useful to understand the complex dynamics in education [9].

2 Literature review

In recent years, causal algorithms have been used in various educational studies
to identify key factors that influence academic performance, educational equity,
and the efficiency of educational policies. Below we show some relevant works
found in our bibliographic review

Peralta et al. [11] propose an approach using Bayesian networks to identify,
analyze, and weigh causal relationships influencing student outcomes. By lever-
aging real-world data from the Universidad Católica de Temuco, their model of-
fers a more comprehensive understanding of the underlying factors contributing
to dropout and graduation. The findings reveal key variables and relationships
that align with expert opinions, suggesting the superior ability of our model to
represent the causal dynamics of these events. Ultimately, this research paves the
way for the development of more effective retention policies and timely degree
completion strategies.
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Chen et al. [2] developed a model, CIRF-MLP, which combines causal infer-
ence methods with machine learning to predict students’ post-graduation out-
comes based on their academic data. The study also introduced a visual analytics
tool, CausalCareerVis, that helps analyze the causal relationships between aca-
demic performance and career choices. The model showed high accuracy and
interpretability, providing insights that can assist students with career planning
and guide university administrators in curriculum development.

Rodriguez et al. [12] investigate the relationship between the educational
use of information and communication technology (ICT), students’ technolog-
ical skills, and academic performance among university students in Barinas,
Venezuela. A sample of 410 students from various universities was surveyed to
assess their ICT usage, proficiency, and academic results. The analysis employed
structural equation modeling to explore causal links. The findings revealed that
while ICT use significantly impacts students’ technological skills, its direct effect
on academic performance was minimal.

Misiunas et al. [8] employ Bayesian Networks (BNs) to uncover causal re-
lationships within a dataset comprising demographic, academic, and financial
characteristics of university students. Factor analysis on mixed data is utilized
to identify groups of dependent variables and validate BN structure. The BN,
learned through bootstrapping, reveals two primary structures: one focused on
academic performance and the other on financial, housing, and demographic fac-
tors. Prediction accuracy using pre-college evidence is low (55%), while on-going
college evidence significantly enhances accuracy (75%).

Silva et al. [15] investigate the causal effects of educational interventions on
student performance. By combining educational data mining techniques with
traditional theory-driven models, they address the limitations of previous EDM
studies that lack causal reasoning. Using large-scale assessment data from Brazil,
the authors identify key unobserved confounders through causal graph analysis
and incorporate them into a two-way logistic regression fixed effects model. The
findings highlight the significance of socioeconomic factors, faculty education
policies, and the role of Brazilian states in shaping student performance.

On the other hand Gerard et al. [5] focuses on identifying causal relationships
among six criteria that define the synthetic indicator of the quality of education
systems (ISQ) in OECD countries. Utilizing directed acyclic graphs (DAGs) and
causal Bayesian networks, the research aims to measure and interpret the causal
relations between these criteria and the ISQ 2018 score. The study emphasizes
the importance of factors such as equity, parental engagement, and efficiency in
determining educational effectiveness.

In the reviewed works we did not find direct applications in data from univer-
sity entrance exams in Chile regarding the discovery of causal structures. Given
the availability of the data, we propose for the first time to apply various causal
discovery algorithms to find such structures in the local context.
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3 Causal models

Causal models are a fundamental tool in understanding the relationships between
variables, allowing researchers to infer cause-and-effect connections rather than
mere correlations. These models help identify the underlying mechanisms that
drive changes in one variable due to another, often supporting decision-making
and policy development.

This model considers a graph G = (V,E) consists of a set of nodes V and
edges E. In artificial intelligence learning algorithms, nodes represent variables
in the input dataset, so the terms "node" and "variable" are often used inter-
changeably [7]. Two nodes X and Y are adjacent if they are connected by an
edge (X − Y ), and the nodes adjacent to a node X in graph G are denoted as
adj(X,G). An edge is directed if it has an orientation towards one of the nodes. If
the edge is directed from X to Y (XßY or Y ¸X), we say that Y is a descendant
of X, or that X is the parent of Y . A Directed Acyclic Graph (DAG) is defined
as one where all edges are directed, and no directed cycles exist. A DAG has a
unique topological order if there is a directed path that includes all nodes.

To determine if the nodes X and Y are d-separated or d-connected, three
rules are considered [10]:

1. Unconditional Separation: Nodes X and Y are d-connected if there is a
free path between them, meaning a path that can be traversed by following the
direction of the links. Otherwise, the nodes are d-separated.

2. Blocking by Conditioning: When variables Z are measured in a system,
the conditional dynamics of other variables change. In a DAG, this dynamic is
expressed by the dependence (d-connected) of variables when conditioned on Z.

3. Conditioning on Colliders: If a collider is part of the conditioning set Z or
has a descendant in Z, it does not block the path traced by the collider.

In the causal interpretation, the DAG G represents a causal structure where
directed edges indicate direct causes between nodes. Understanding causal struc-
tures, given by the graph, is crucial for identifying the underlying factors that in-
fluence student admission to higher education. However, discovering these causal
relationships is inherently challenging.

4 Proposed methodology

This work is based on data from the 2021 Higher Education Access Test (PAES),
provided by the Chilean Ministry of Education (MINEDUC). The dataset in-
cludes detailed information on academic performance in different areas, along
with sociodemographic variables. A data cleaning and normalization approach
was used to ensure the quality and relevance of subsequent analyses. Missing
values were removed, categorical variables were coded, and continuous variables
were normalized, ensuring that the assumptions of the causal algorithms were
satisfied.
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4.1 Variable selection

For the construction of the causal graphs, variables were selected that are consid-
ered to have a significant impact on academic performance and access to higher
education [1]. These include, but are not limited to, scores in Mathematics,
Language and Communication, family economic situation, type of educational
establishment (public/private), and geographic location.

4.2 Causal structure discovery algorithms

PC Algorithm The PC algorithm (Peter-Clark) was the first to be applied for
discovering causal relationships among the selected variables [6]. Their steps are
given by:

1. Initialization: A completely connected graph is started.
2. Independence Tests: Conditional independence tests are conducted using

Fisher’s Z Test.
3. Arc Removal: Arcs that do not meet the established significance threshold

were removed.
4. Arc Orientation: The remaining arcs are oriented according to the con-

straints imposed by the independence tests and the structure of the graph.

4.3 GES Algorithm

The GES (Greedy Equivalence Search) algorithm was used to explore different
possible causal structures. GES is a heuristic search algorithm that employs
a forward and backward search approach to identify the most probable causal
structure [3]. The implemented steps were:

1. Forward Search: Arcs are added to the initial graph, evaluating the Bayesian
Information Criterion (BIC) at each iteration.

2. Backward Search: Subsequently, arcs that do not improve the BIC score
were removed.

3. Model Selection: The model with the highest BIC score is selected as the
definitive causal graph.

4.4 LINGAM Algorithm

The LINGAM (Linear Non-Gaussian Acyclic Model) algorithm were designed
to address the potential non-normality of relationships between variables. This
method is particularly useful in contexts where the relationships between vari-
ables cannot be adequately modeled under Gaussian assumptions [14]. The im-
plementation follows these steps:

1. Initial Modeling: A structural equation model is constructed assuming
linear relationships.

2. Decomposition: The variables are decomposed to isolate the non-Gaussian
relationships.

3. Arc Orientation: Arcs in the final graph are oriented based on the decom-
posed structure.
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Table 1. Variables of dataset

COLUMN Type
CODIGO-ENS Nominal
LOCAL-EDUCACIONAL Nominal
UNIDAD-EDUCATIVA Nominal
DEPENDENCIA Nominal
CODIGO-REGION-EGRESO Nominal
CODIGO-PROVINCIA-EGRESO Nominal
CODIGO-COMUNA-EGRESO Nominal
ANYO-DE-EGRESO Ordinal
PTJE-NEM Ordinal
PORC-SUP-NOTAS Ordinal
PTJE-RANKING Ordinal
PROM-CM-ACTUAL Ordinal
CODIGO-COMUNA-DOMICILIO Nominal
SEXO Nominal
TIENE-TRABAJO-REM Nominal
HORARIO-TRABAJO Nominal
CUANTOS-TRABAJAN-GRUPO-FAM Ordinal
PERSONAS-ESTUDIAN-SUP Ordinal
ACTIVIDAD-JEFE-FAMILIA Nominal
INGRESO-PERCAPITA-GRUPO-FA Ordinal
EDUCACION-MADRE Nominal
COMPLETO-EDUCACION-MADRE Nominal
EDUCACION-PADRE Nominal
COMPLETO-EDUCACION-PADRE Nominal
ESTUDIO-INSTITUCION-SUPERIOR Nominal

4.5 Model Evaluation and Validation

The evaluation of the generated causal graphs was conducted using a cross-
validation approach. The data was divided into training and test subsets. The
training set was used to construct the causal graphs, while the test set was
employed to assess their predictive capability and the coherence of the identified
causal relationships. Additionally, sensitivity analyses were performed to ensure
the model’s robustness against variations in the data and algorithm parameters
[10], [16].

5 Experiments

The final dataset consists of a total of 25 variables considering 270 412 records.
Previously, we delete all the records with incomplete information. The variables
of the dataset are shown in Table 1. The causal algorithms were implemented
using library DoWhy [13].
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5.1 Application of algorithms for structure causal discovery

For the application of the PC algorithm, we consider one random percent of the
records. The reason were the computing resources available as this algorithm
were extremely slow. Stillmore, this processing required seven days in our equip-
ment. In Figure 1, we can see the outcome of the execution of the PC algorithm.
In a future version, we will consider all available data for this algorithm.

For the application of the GES algorithm, all the records were processed,
yielding the following result. In Figure 2, we can see the outcome of the GES al-
gorithm execution. For the application of the LINGAM algorithm, all the records
were selected, yielding the given in Figure 3.

6 Discussion

The PC algorithm produces graphs that are connected as well as some that
are not, and its computation time is greater, while also providing very little
visual analysis ease for decision-makers. In the GES algorithm, while all nodes
are related and none are excluded, the issue is that it is not easy for users to
understand.

When executing the three causal algorithms, LINGAM’s main function is
to take a DAG and data corresponding to the dataset as input and return an
evaluation result. When executing the function ‘result = falsify-graph(g-true,
data, plot-histogram=True)‘, it is found, as expected, that the true DAG is not
rejected. It is clear what it does: when we provide a specific DAG, it tests for
violations of the Local Markov Conditions (LMC) by performing conditional
independence (CI) tests. For each node in the graph, it tests "falsify-graph" [4].

Next, we randomly permute the nodes of the given DAG and retest for LMC
violations. This can be done for a fixed number of permutations or for the total
number of nodes in the given DAG. The probability that a random node per-
mutation (the null) has as few or fewer violations as the given DAG (the test
statistic) can then be used as a measure to validate the given DAG (the p-value
reported in the upper right corner of the graph) [4].

Given the above, an oracle test is executed for each permutation with the
given DAG, meaning that if the given DAG were the true DAG, how many
LMC violations would be expected for some permutation? It should be noted

Fig. 1. Result of PC algorithm. Please see details in PDF file.
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Fig. 2. Causal graph generated by GES algorithm.
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Fig. 3. Causal graph generated by LINGAM algorithm
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Fig. 4. Result of the Falsification Test in LINGAM Algorithm

that asking about the number of permutations that violate zero LMC is identical
to asking how many DAGs lie in the same Markov equivalence class (MEC) as
the given DAG. The method uses the number of permuted DAGs that lie in the
same MEC as the given DAG (with zero tPA violations) as a measure of how
informative the given DAG is. Fig. 4. shows the results of test.

Given the previous graph, the histogram of LMC violations of the permuted
DAGs (blue) and d-separation violations (oracle, orange) of the permuted DAGs
is shown. The dashed orange and blue lines indicate the number of LMC viola-
tions (blue) / d-separation violations (orange) of the given DAG. As expected
for the true DAG, both histograms overlap significantly (except for statistical
errors in the CI tests) [4].

From the application, the following result is obtained: The given DAG is
informative because 0/20 of the permutations lie in the Markov equivalence
class of the given DAG (p-value: 0.00). The given DAG violates 77/231 LMC
and is better than 100.0% of the permuted DAGs (p-value: 0.00). According to
the provided significance level (0.05) and since the DAG is informative, we do
not reject the DAG.

Causal discovery methods require appropriate assumptions for accuracy guar-
antees, and thus there will be variation among the results returned by different
methods in practice. However, these methods can be usefully combined with do-
main knowledge to construct the final causal graph. The causal effect estimate
of INGRESO-PERCAPITA-GRUPO-FA on PTJE-NEM is positive and corre-
sponds to 4.817 which appears reasonable. Note that PTJE-NEM is the more rel-
evant variable given that it indicates the points that a student obtains in the test,
therefore, we choose as output variable. We choose INGRESO-PERCAPITA-
GRUPO-FA as treatment variable because is the more relevante variable as it
indicates the income of the student’s family.
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Fig. 5. Result of the Falsification Test in GES Algorithm

For the GES algorithm, the result was similar to that of LINGAM, yielding
the result of Fig. 5. The given DAG is informative because 0/20 of the permu-
tations are in Markov. The given DAG violates 20/121 LMC and is better than
100 percent of the permuted DAGs (p-value: 0.00). According to the significance
level provided (0.05) and because the DAG is informative, we conclude that the
test do not reject the DAG. Complementary, in the estimation of the causal ef-
fect of INGRESO-PERCAPITA-GRUPO-FA on the PTJE-NEM is 4.018 which
also appears reasonable.

In terms of usability, the presented graphs may pose challenges for decision-
makers. We believe that, in particular, the graph given by LINGAM appears
more interpretable; however, as future work, we plan to validate it function-
ally. Regarding decision-making, our next steps involve simulating interventions
based on the causal graph to observe the effect and thus aid in decision-making,
for example, by helping students in specific conditions. Finally, to mitigate the
impact of hidden variables, we plan to incorporate more variables in the future,
such as weather or the presence of policies.

7 Conclusion

In conclusion, the evaluation of the PC, GES, and LINGAM algorithms high-
lights the strengths and weaknesses of each in causal discovery. With more suc-
cess, LINGAM effectively tests for Local Markov Condition violations and pro-
vides a clear validation framework through permutations. The analysis reveals
that the given DAG is informative, as it consistently outperforms the permuta-
tions in identifying true causal relationships. The discovery of causal structure
appears promisory to help to identify the causal structures inside the educational
data in Chile.
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Abstract. Bilateral motor functional connectivity during a motor task
was investigated in patients with Parkinson’s disease (PD) and healthy
controls using Graphical Models and continuous-wave functional Near-
Infrared Spectroscopy (fNIRS). Here, we integrate probabilistic graphical
models (PGMs) with fNIRS data to compare functional connectivity be-
tween PD patients and healthy controls. Results revealed significant dif-
ferences in connectivity, particularly during left-hand motor tasks, high-
lighting disrupted communication in PD motor networks. Using struc-
ture Hamming distance (SHD) metrics, we quantified these differences,
demonstrating the potential of PGMs to capture the altered brain net-
work architecture in PD. Our results present GM as a promising tool for
functional connectivity analysis in the fNIRS field.

Keywords: Functional connectivity · Parkinson’s disease · fNIRS.

1 Introduction

1.1 Parkinson’s disease and functional neuroimaing

Parkinson’s disease (PD) is a progressive neurodegenerative disorder character-
ized by motor symptoms such as bradykinesia, tremor, rigidity, and postural
instability, as well as non-motor symptoms like cognitive decline, depression,
and sleep disturbances. In Latin America, the prevalence of PD is increasing due
to the aging population and improved access to diagnostic tools. Countries such
as Brazil, Argentina, and Mexico report the highest prevalence rates, estimated
at 40–50 cases per 100,000 individuals [7]. However, healthcare disparities, late
diagnosis, and limited access to specialized care continue to present significant
challenges in the management of PD in this region [11].

Functional neuroimaging studies have demonstrated alterations in resting-
state networks, including disrupted connectivity within the motor and cogni-
tive networks in PD patients [3]. These neuroimaging findings have contributed
to identifying potential biomarkers for early diagnosis and monitoring of dis-
ease progression. Functional brain connectivity studies have become crucial in
unraveling the neural network disruptions associated with Parkinson’s disease.
Functional near-infrared spectroscopy (fNIRS) has recently emerged as an al-
ternative tool to explore brain connectivity, particularly in cortical regions. The
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characteristics of fNIRS, such as portability, non-invasiveness, and tolerance to
motion, make this modality suitable for interrogating brain activity in the PD
population. Initial studies using fNIRS in PD patients have shown altered
cortical connectivity during motor tasks, providing a complementary
approach to fMRI in understanding the neural mechanisms of PD [8].

1.2 Probabilistic and Causal Graphical Models in Brain
Connectivity

Probabilistic graphical models (PGMs), such as Bayesian networks, enable the
modeling of probabilistic dependencies between brain regions, providing insights
into functional connectivity by estimating conditional independencies. These
models are especially powerful in brain connectivity studies as they can dis-
entangle direct from indirect interactions, allowing researchers to infer not just
correlations but potential causal pathways in neural networks [5, 1, 10]. The ap-
plication of fNIRS to study functional connectivity in Parkinson’s disease is still
relatively new. Few studies have employed PGMs to explore the altered connec-
tivity patterns in PD patients during motor tasks, revealing impaired commu-
nication between the pre-motor and supplementary motor areas [14]. However,
comprehensive exploration of causal pathways using causal graphical models in
fNIRS studies of PD remains limited. Still, the potential to map causal dis-
ruptions in these networks could lead to early detection markers and better
treatment strategies [8, 9].

2 Methods

2.1 Experimental protocol

The study was approved by the Institutional Review Board and took place at
the Central Hospital "Dr. Ignacio Morones Prieto" in San Luis Potosí, Mexico,
from October 2021 to October 2022. The study included twenty patients with
PD (mean age 69.9, SD = 10.1, 60% male) and 20 healthy subjects matched
for age and sex, without any movement disorders (mean age 65.6 years, SD
= 9.9, 45% male). PD patients were assessed using the United Kingdom PD
Society Brain Bank criteria. Disease severity was determined using the Hoehn
and Yahr scale and the MDS-UPDRS. The brain activity was measured us-
ing the portable fNIRS system Brite MKII (Artinis Medical Systems BV, the
Netherlands)(760 and 850 nm at 25 Hz). The setup included 20 channels (10
per hemisphere) placed across bilateral motor regions of the brain to mea-
sure changes in hemoglobin. Following a previously used paradigm [2], partic-
ipants performed a 10-second finger-tapping task followed by a 20-24 s recov-
ery period targeting the primary motor cortex (M1) activation. The recording
included 20 blocks (10 per hand) lasting approximately 11 minutes (approxi-
mately 4000 samples after resampling at 6Hz). Data is publicly available online
(https://doi.org/10.5281/zenodo.7966829).
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2.2 Graphical Models

The PC algorithm, developed by Spirtes and Glymour, learns the structure of a
causal graph from observational data. It assumes conditional independence and
uses statistical tests to identify these independencies. The algorithm consists
of three phases: identifying the graph’s skeleton, orienting edges, and resolving
any remaining ambiguities in edge directionality. It is widely used due to its
scalability and ability to handle large datasets, making it suitable for applications
like brain connectivity modeling [13].

2.3 Assessment metrics

Here, we opted for the structural Hamming distances to evaluate the intra-
group structural differences [12, 4]. We computed the matrix SHD in which each
entry (i, j) is obtained as SHDi,j(Gi, Gj), where Gi and Gj are the models
discovered by the PC algorithm for the subjects i and j (i ̸= j). Considering
the patterns (equivalence classes) obtained, we computed four SHD matrices
from the combination of the groups (control and PD) and stimulation type (left
finger-tapping and right finger-tapping). Finally, we determined the statistical
intra-group differences by using a T-test with an alpha value of 0.05.

3 Results

The time series from HbO were used as input data to the PC algorithm. We used
the stable (order independent) PC version with α = 0.05 and Fisher’s Z as the
conditional independence test [?]. Then, the PC algorithm generated a pattern
(equivalence class) Pi for each subject i. Next, the SHDC,R, SHDPD,R, SHDC,L,
and SHDPD,L were calculated for the control and PD groups and left and right
finger tapping task. Examples of a structure Pi, SHDC,L, and SHDPD,L are
shown in Fig. 1 a and b.

From the comparison of the structural Hamming distance (SHD) matrices,
we observed a smaller variance within the LFT control group. In Figure 1 c, a
box plot set depicts the SHD results distribution from subjects within the same
group. In this sense, a higher intra-group variable was observed in the PD group.
The analysis indicated that the control group exhibited statistically significant
differences compared to the PD group, specifically to LFT (t-value = -8.29, dof
= 378, p-value < 0.001).

4 Conclusion

In this work, we have used graphical models to compare the functional connec-
tivity differences between control and Parkinson’s disease patients using fNIRS.
We employed a finger-tapping task to stimulate hemodynamic activity and pro-
cessed the time series data using a standard pipeline for input into the PC
algorithm. By comparing the structures of each pair of subjects, we quantified
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Fig. 1. a. Example of the structure of a graphical model Gi from Control 02. b Ex-
amples of SHDC,L, and SHDPD,L. c. Box plots of the SHDC,R, SHDPD,R, SHDC,L,
and SHDPD,L groups. The mean value is represented with a green triangle.

the difference utilizing the structure Hamming distance (SHD). Our results re-
vealed distinct differences in connectivity between the control and PD groups,
particularly during the left finger tapping task. This can be caused by the inter-
subject variability, typically observed in the individual structure approach [6].
Our approach highlights the potential of graphical models in identifying connec-
tivity variations in fNIRS data between healthy and non-healthy populations.
Our findings indicate that employing more specialized methodologies could elu-
cidate even more nuanced distinctions among groups and commonalities within
individuals.
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